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Abstract Abstract 
Hypertensive pregnancy disorders (HPD) such as preeclampsia are highly associated with maternal 
vascular malperfusion of the placenta, an organ that exchanges nutrients and oxygen between the 
maternal circulation and the growing fetus. Adverse pregnancy outcomes are difficult to predict because 
there is insufficient understanding of how poor maternal arterial remodeling leads to disease. There is 
also a lack of reliable tools to evaluate these changes in early gestation. 

The hypothesis of this dissertation was that magnetic resonance imaging (MRI) could noninvasively 
evaluate uteroplacental function in vivo through a combination of arterial spin labeling (ASL), 4D flow, and 
time-of-flight (TOF) techniques which were already effective in the evalution of other cardiovascular 
diseases. These flow and perfusion imaging studies were conducted on human pregnant volunteers in 
their second and third trimesters at 1.5T. Many of them were also examined by conventional Doppler 
ultrasound (US) and followed through delivery. 

Flow-sensitive Alternating Inversion Recovery (FAIR) ASL MRI with background suppression was found to 
be feasible in detecting placental perfusion signal despite the presence of motion artifacts. An important 
consideration when studying placental ASL was the slow movement of maternal arterial blood in a large 
cavity called the intervillous space. This was a unique feature of placental anatomy which distinguished it 
from other organs containing capillaries. It became apparent that traditional models to estimate 
perfusion from MRI were no longer applicable. In this work, a statistical approach was first developed to 
filter out motion artifacts, followed by a coordinate transformation to better represent the lobular 
distribution of blood flow in the intervillous space of the placenta. The uterine arteries (UtAs) are the main 
maternal blood supply of the placenta and have also long been suspected to be involved in HPD, though 
US-based measurements have not yet been found to be highly predictive for widespread clinical use. In 
this work, 4D flow MRI enabled visualization of the tortuous UtAs while measuring volumetric flow rate. 
Its performance in predicting incidence of preeclampsia and small-for-gestational age births was 
comparable to Doppler US. When considering the innovative potential of 4D flow MRI to capture complex 
flow dynamics, this validation demonstrated the value of continuing technical development for improving 
HPD risk assessment. Furthermore, centerline extraction of the maternal pelvic arteries in TOF MRI, from 
the descending aorta to the UtAs and external iliac arteries, provided quantitative metrics to characterize 
the geometry including path length and curvature. Pulse wave velocity (PWV) was estimated using path 
length by TOF MRI and velocimetry by 2D phase contrast and 4D flow MRI with results showing sensitivity 
to differences between UtAs and external iliac arteries. These approaches provided physiological metrics 
to explore and characterize the remodeling process of the uteroplacental arteries. This dissertation 
demonstrates the feasibility of measuring structure and hemodynamics of the maternal vascular blood 
supply using non-contrast MRI that can lead to the more reliable biomarkers of adverse pregnancy 
outcomes needed to diagnose and treat HPD. 
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ABSTRACT 

MRI ASSESSMENT OF MATERNAL UTEROPLACENTAL CIRCULATION IN PREGNANCY 

Eileen Hwuang 

Walter R. Witschey 

John A. Detre 

Hypertensive pregnancy disorders (HPD) such as preeclampsia are highly associated with 

maternal vascular malperfusion of the placenta, an organ that exchanges nutrients and oxygen 

between the maternal circulation and the growing fetus. Adverse pregnancy outcomes are difficult 

to predict because there is insufficient understanding of how poor maternal arterial remodeling 

leads to disease. There is also a lack of reliable tools to evaluate these changes in early 

gestation. 

The hypothesis of this dissertation was that magnetic resonance imaging (MRI) could 

noninvasively evaluate uteroplacental function in vivo through a combination of arterial spin 

labeling (ASL), 4D flow, and time-of-flight (TOF) techniques which were already effective in the 

evalution of other cardiovascular diseases. These flow and perfusion imaging studies were 

conducted on human pregnant volunteers in their second and third trimesters at 1.5T. Many of 

them were also examined by conventional Doppler ultrasound (US) and followed through 

delivery. 

Flow-sensitive Alternating Inversion Recovery (FAIR) ASL MRI with background suppression was 

found to be feasible in detecting placental perfusion signal despite the presence of motion 

artifacts. An important consideration when studying placental ASL was the slow movement of 

maternal arterial blood in a large cavity called the intervillous space. This was a unique feature of 

placental anatomy which distinguished it from other organs containing capillaries. It became 
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apparent that traditional models to estimate perfusion from MRI were no longer applicable. In this 

work, a statistical approach was first developed to filter out motion artifacts, followed by a 

coordinate transformation to better represent the lobular distribution of blood flow in the 

intervillous space of the placenta.  

The uterine arteries (UtAs) are the main maternal blood supply of the placenta and have also long 

been suspected to be involved in HPD, though US-based measurements have not yet been found 

to be highly predictive for widespread clinical use. In this work, 4D flow MRI enabled visualization 

of the tortuous UtAs while measuring volumetric flow rate. Its performance in predicting incidence 

of preeclampsia and small-for-gestational age births was comparable to Doppler US. When 

considering the innovative potential of 4D flow MRI to capture complex flow dynamics, this 

validation demonstrated the value of continuing technical development for improving HPD risk 

assessment.   

Furthermore, centerline extraction of the maternal pelvic arteries in TOF MRI, from the 

descending aorta to the UtAs and external iliac arteries, provided quantitative metrics to 

characterize the geometry including path length and curvature. Pulse wave velocity (PWV) was 

estimated using path length by TOF MRI and velocimetry by 2D phase contrast and 4D flow MRI 

with results showing sensitivity to differences between UtAs and external iliac arteries. These 

approaches provided physiological metrics to explore and characterize the remodeling process of 

the uteroplacental arteries.  

This dissertation demonstrates the feasibility of measuring structure and hemodynamics of the 

maternal vascular blood supply using non-contrast MRI that can lead to the more reliable 

biomarkers of adverse pregnancy outcomes needed to diagnose and treat HPD.  
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CHAPTER 1: OVERVIEW OF THE DISSERTATION 

1.1 Clinical Relevance and Motivation to Address Hypertensive Pregnancy 

Disorders 

Despite advances in obstetric care, preeclampsia remains one of the leading pregnancy 

complications in the world. Preeclampsia is a common type of hypertensive pregnancy disorder 

(HPD), a syndrome surrounding high blood pressure during gestation. More severe cases may 

present as a multi-system disorder including pulmonary edema, cerebral disturbances, and 

thrombocytopenia [1]. Rates of preeclampsia in the United States have been on the rise, with 

those delivering in 2003 at 6.7-fold increased risk compared to those delivering in 1980 [2]. 

Among inpatient deliveries in the United States, preeclampsia/eclampsia cases have risen 21% 

from 2005 to 2014 [3] (Figure 1). It is estimated that 3.4% of pregnancies involve preeclampsia 

[2]. HPD may occur in conjunction with intrauterine growth restriction (IUGR), defined as a fetus 

that has not fully attained its growth potential. HPD is known to have critical long-term effects not 

only in terms of fetal morbidity and mortality (accounting for 4-9% of stillbirths worldwide [4]) but 

also increased risk of maternal death (accounting for 15.9% of maternal deaths in the United 

States [5]) and maternal chronic illness, especially cardiovascular disease [6]. 
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Figure 1 Rates of preeclampsia/eclampsia from 2005-2014 among inpatient deliveries in 
the United States [3] 

Currently, the most effective way to stop the damaging effects of preeclampsia is to deliver the 

baby [7], but this has to be balanced with maximizing the gestational time for fetal development 

as there are also risks of preterm birth. Therefore, anti-hypertensive medications are often 

administered to protect the mother from hypertensive complication during or immediately after 

pregnancy. For example, aspirin is known to decrease blood pressure by inhibiting platelet 

activation and to improve endothelial dysfunction by allowing for increased vasodilation [8, 9]. 

Another example is calcium supplementation, which can relax vascular smooth muscle and inhibit 

vasoconstriction [10, 11]. Additionally, magnesium sulfate can be prescribed to prevent eclamptic 

seizures. 

More research is needed to better understand molecular targets for treating adverse pregnancy 

outcomes. Fetal safety and medication use during pregnancy is understudied as most clinical 
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trials have been conducted at the exclusion of pregnant women [12, 13]. However, more and 

more women are on medications for chronic conditions during the period when they do not know 

that they are pregnant [13]. There are too few studies on the pharmacokinetic patterns of drug 

delivery and absorption in pregnant women. Therefore, there is a need for new technologies to 

assess the in vivo efficacy of drugs in real-time and better understand physiological changes in 

pregnancy that would have a critical effect on dosing [13]. 

Much research has gone into developing and testing screening methods for preeclampsia to 

identify patients who would benefit the most from treatment such as early delivery [7, 14] and 

anti-hypertensive therapy [9]. When screening with maternal factors and biochemical factors 

alone, only 40% of preeclamptic women were identified [15]. One of the most recent and 

promising first-trimester screening studies for preeclampsia consisted of a combination of 

maternal history, mean arterial pressure, uterine artery pulsatility index, and placental growth 

factor. It reported a detection rate for preterm preeclampsia of 67% with a screen-positive rate of 

10% [16, 17]. However, multivariate models such as these are too complex for widespread 

clinical adoption so far [18]. 

These gaps in obstetric treatment and screening tools were brought to the forefront in 2014 when 

the National Institutes of Health identified the placenta as “the least understood human organ” 

[19]. This sparked a collective initiative to investigate the development, structure, and function of 

the placenta. 

The goal of the Human Placenta Project is to develop technologies that would be able to evaluate 

the placenta safely, non-invasively, and in real-time. Given the growing body of evidence that 

placental abnormalities contribute to adverse pregnancy outcomes including HPD, the hope is to 

provide new avenues of patient care and improve the lifelong health of both mother and baby. A 

multidisciplinary team at the University of Pennsylvania responded to this call and was awarded a 

grant from the Human Placenta Project to investigate placental development by harnessing 
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existing multi-modality imaging tools. This consisted of: 1) ultrasound of structure and blood flow, 

2) MRI of placental oxygenation, flow, and perfusion, and 3) near-infrared spectroscopy of 

pregnant women. 

1.2 Current Technological Limitations in Uteroplacental Flow and Perfusion 

The limited understanding of the pathophysiology of HPD is largely attributed to the lack of 

suitable technologies to investigate human uteroplacental hemodynamics. The current primary 

method for measuring uterine artery and placental blood flow is Doppler ultrasound (US) (Figure 

2). While it does provide a real-time reading of velocity and is a portable and safe technology for 

obstetrics, it has a limited field of view and spatial resolution, making it difficult to reliably measure 

the cross-sectional area for volumetric flow in the tortuous uterine arteries and spiral arteries.  

An alternative method for non-invasively measuring blood flow is MRI, which allows for multiple 

contrast mechanisms. Time-of-flight (TOF) angiography provides a large field-of-view and 

sufficient spatial resolution to visualize both uterine arteries, allowing quantification of vessel 

morphometry and cross-sectional areas. Phase contrast MRI has been used to measure blood 

flow in the uterine arteries, but 2-dimensional (2D) methods [20, 21] are limited because they 

require the imaging plane be oriented perpendicular to the vessel, a difficult task in the small and 

tortuous uterine arteries. 4D flow methods can potentially address this limitation by measuring 

flow dynamics in 3-dimensional space [22]. Arterial spin labeling (ASL) MRI has been used to 

measure placental perfusion at the microvascular level [23, 24] though the technique is 

vulnerable to motion artifacts and traditional signal models may not be accurate for the unique 

arteriovenous structure of the placenta. 
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Figure 2 Example Doppler US of the right uterine artery in a representative subject 
 

1.3 Research Objectives 

The research described in this dissertation aims to address the need for better understanding of 

the pathophysiology of HPD by developing imaging and computational technologies for 

investigating the hemodynamics of pregnancy. The long-term vision is that improved knowledge 

about the maternal cardiovascular system can lead to better clinical management and a reduction 

in adverse pregnancy outcomes worldwide. 

In support of this endeavor, this dissertation presents the following contributions: 

• Development of ASL MRI acquisition and processing strategies for measuring placental 

perfusion 

• Application of 4D flow MRI and TOF MRI for measuring uterine artery flow and pulse 

wave velocity in 2nd and 3rd trimester human pregnancy 

• Validation of 4D flow MRI and its association with pregnancy outcomes 
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• Exploration of potential physiological biomarkers of HPD by estimating uterine artery path 

length, curvature, and pulse wave velocity from MRI data. 

1.4 Dissertation Overview 

This dissertation is organized as follows. 

Chapter 2 begins with a description of the normal cardiovascular system followed by an 

explanation of the anatomical and functional changes that occur during pregnancy and HPD. 

Chapter 3 provides a background on existing non-invasive technologies to assess cardiovascular 

disease. 

In Chapter 4, an arterial spin labeling (ASL) MRI approach to measuring spiral artery function is 

described. Challenges to measurement accuracy by motion artifacts and the unique vascular 

structure of the placenta are addressed. 

Chapter 5 presents non-invasive imaging of the uterine artery using ultrasound, 4D flow MRI, and 

TOF MRI. 

Chapter 6 describes the assessment of HPD with non-invasive imaging and presents results from 

the association between 4D flow MRI and pregnancy outcomes. 

In Chapter 7, feasibility of estimating path length and curvature from centerline extraction of TOF 

MRI of the maternal pelvic arteries is demonstrated. Also, feasibility of estimating pulse wave 

velocity from TOF and 4D flow MRI is shown. The potential utility of these parameters to test 

hypotheses about HPD physiology and pathophysiology is discussed. 

Chapter 8 summarizes the dissertation with concluding remarks about MRI in pregnancy, 

limitations, and future directions. 
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CHAPTER 2: CARDIOVASCULAR SYSTEM AND PREGNANCY 

2.1 Overview of the normal function of the cardiovascular system 

The cardiovascular system is important for bringing oxygen and nutrients to tissues throughout 

the body and clearing metabolic waste. It also plays a critical role in regulating body temperature, 

endocrine function, and compensating for various physiologic conditions. It is comprised of a 

pump and a network of vessels to carry blood throughout the system [25]. The heart generates a 

pumping force on the blood with four chambers: left atrium, left ventricle, right atrium, and right 

ventricle. Oxygenated blood from the lungs enters the left atrium, then enters the left ventricle. 

The thick, muscular walls of the left ventricle allow it to pump blood into the aorta and on to the 

rest of the body. As peripheral tissues absorb and metabolize the oxygen delivered, the blood 

returning to the heart has reduced oxygen when it enters the right atrium and right ventricle. The 

right ventricle is also surrounded by muscle and generates enough force to deliver blood through 

the lungs to be reoxygenated before going back to the left atrium to continue the cardiac cycle. 

The peripheral vasculature is a network of arteries and veins to circulate blood throughout the 

body. The diameter of the vessels decreases from aorta to arteriole to capillary, and progressively 

increases again from venule to vein to vena cava. All vessels are internally lined with a thin layer 

of endothelial cells. In capillaries, this layer allows for transport of molecules between the vessels 

and the interstitium through diffusion, pore filtration, and pinocytosis [25]. Venules have an 

endothelial layer surrounded by fibrous tissue. The vessel walls of the aorta, arteries, arterioles, 

veins, and vena cava have layers of elastin, smooth muscle, and fibrous tissue surrounding the 

endothelial layer. However, the arterial vessels (aorta, arteries, arterioles) tend to have thicker 

walls compared to the venous vessels (venules, veins, vena cava) in order to sustain higher 

blood pressures and velocities (Fig. 3). 
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Figure 3 Description of vessel geometrical properties and tissue components in various 
blood vessel segments [25]. Note: Cross-sectional areas are not drawn to scale. 

2.1.1 Hemodynamics of the arterial system 

Hemodynamics is the study of the fluid properties of blood, the manner in which it moves through 

blood vessels, and how external pressures affect its movement. The rate at which blood is 

propelled from the left ventricle to the rest of the body is called the cardiac output. It is reported 

in mL/min and is calculated as a product of stroke volume (volume of blood ejected in one left 

ventricular contraction, mL) and heart rate (number of beats per minute, min-1). The human body 

has mechanisms in place to adapt to the body’s demands. For example, at rest skeletal muscle 

receives about 20% of the cardiac output but during exercise it can receive up to 80% [26]. 

The typical pressure of outflowing blood from the left ventricle, called mean arterial pressure, is 

about 100 mmHg and by the time blood returns to the right atrium, its pressure, referred to as 

right atrial pressure, is 2-6 mmHg [27]. This positive pressure difference is the primary driving 

factor of blood along blood vessels throughout the system. The systemic vascular resistance, 

reported in mmHg/mL/min, determines how much pressure is required to produce a given cardiac 

output. According to Darcy’s law, cardiac output is directly proportional to this pressure difference 
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by a factor of 1/systemic vascular resistance, i.e. cardiac output = (aortic pressure – right atrial 

pressure)/systemic vascular resistance. 

Besides pressure, there are other sources of fluid energy driving blood flow. Bernoulli’s equation 

states that the mechanical energy of a unit volume of blood is additionally driven by 

potential/gravitational energy and kinetic energy: 

constant =	#$ + &'ℎ + &)*  , 

where !"  =aortic pressure, !  =density of blood, g=gravitational acceleration, h=height, and 

v=velocity. 

In the human circulatory system, the terminal arteries and arterioles are known to have the 

highest resistance because the pressure drop is the largest across those segments compared to 

other parts of the vascular network. This phenomenon can also be understood at the level of a 

single vessel; when blood is flowing through a cylindrical pipe, narrowing the lumen (at the same 

pressure and height) would decrease the flow (Darcy’s Law) but increase the velocity (Bernoulli’s 

equation). The Hagen-Poiseulle equation states that the resistance R=8µL/(πr4), where µ = fluid 

viscosity, L = length of pipe, and r = radius of pipe, which means that reducing the radius by a 

factor of 2 increases the resistance to flow by a factor of 16!  

The shape of the velocity profile of blood flow in a vessel is a strong reflection of its underlying 

hemodynamics. Most blood flow in vessels is laminar, meaning that the velocity profile is 

parabolic, i.e. v(r) = vmax*(1-r2)/R2, where r = radial position and R = pipe radius. Velocity at the 

vessel wall is zero because of the molecular cohesive forces that restrict movement. This is often 

called the zero-slip condition. Velocity is the highest at the center of the vessel because of 

greatest distance from the molecular cohesive forces at the vessel wall. In locations such as the 

ventricles and near stenoses, the velocity profile is not laminar but turbulent. This means that the 
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flow pattern is more chaotic, the degree of which is described by the Reynolds number: Re = 

νDρ/η, where ν = velocity, D = vessel diameter, ρ = fluid density, and η = fluid viscosity. For 

different combinations of vessel geometry and flow conditions, there is a corresponding critical 

Reynolds number that serves as a threshold value beyond which turbulent flow occurs. For 

example, for uniform steady flow in a straight pipe the critical Re is approximately 2000. In blood 

vessels, flow is often laminar as Re is often below 2000 and can even reach as low as ~0.5. 

Even though there is typically no velocity at the wall, the moving blood still exerts shear stress by 

tugging on the glycocalyx, a layer of polymers coating the endothelium. Wall shear stress 

functions as a signal to the endothelium to secrete molecules such as nitric oxide to vasodilate 

the vessel and reduce the wall shear stress. However, it is frequently the case especially in 

clinical settings that wall shear stress is ignored when calculating velocity. This is called “plug 

flow,” where the velocity profile is approximated as an average single value throughout the vessel 

and flow rate is computed multiplying the average velocity by cross-sectional area. 

The hemodynamic concepts described thus far consider blood flow, pressure, and resistance at 

steady state. In actuality, the cyclical manner in which the heart contracts and relaxes produces 

pulsatile aortic pressure and cardiac output. The degree to which the pulsatile nature of pressure 

and flow is dampened in the rest of the body is based on the interaction between resistance and 

compliance of the arteries [28]. The Windkessel model [29, 30] has often been used to describe 

how pulsatile flow from the heart is dampened by the time it reaches the end organs. It states that 

blood pressure in the cardiovascular system is dependent on two parameters, resistance and 

compliance. The resistance is largely based on the radii of small arteries and arterioles. The 

compliance is largely based on the elasticity of large arteries. Arterial stiffness is often observed 

in hypertensive patients in whom the vessel compliance is very low and/or resistance is very high 

[31-34]. 
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Research has shown that measuring pulse wave velocity, the speed at which a pressure wave 

generated by a heartbeat is transmitted throughout the cardiovascular system, can be useful for 

identifying high-risk patients for various cardiovascular diseases [35-39]. This is because a 

consequence of rigid arterial walls is that pulse wave velocity increases compared to less rigid 

arterial walls. This is approximated by the Moens-Korteweg equation 

  

!"# = %&
'()  , 

where h=wall thickness, E=elastic modulus, r=radius, and !  =density of blood. Fig. 4 shows how 

PWV increases with age with one of the contributing factors being increasing elastic modulus. 

 

Figure 4 A) Plot of elastic modulus (Ep) as age increases and B) plot of PWV as age 
increases. Solid circles (•) denote proximal thoracic aorta and open circles (¡) denote 
proximal pulmonary artery [28, 40] 
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2.1.2 Hemodynamics of the venous system 

After oxygenated arterial blood is metabolized by end organs, deoxygenated blood is returned 

back to the heart via the venous system. Veins and venules are notable for their thin, distensible 

walls and are able to contain a large volume of blood with a small increase in pressure. In fact, 

they can be up to 50x more compliant than arteries and arterioles [26]. Venous pressure tends to 

be negative above heart level. Central venous pressure, an estimate of right atrial pressure, is 

typically measured noninvasively by having the patient lie semirecumbent supine and locating the 

point of collapse of the jugular vein. This is roughly the location where the transmural pressure is 

nearly 0, i.e. the blood pressure matches atmospheric pressure. The distance between the 

collapse of the jugular vein and the manubriosternal angle plus the distance between the 

manubriosternal angle and the right atrium (estimated to be 5 cm) is the central venous pressure 

in cm blood or converted to cmH2O [26]. 

While venous blood flows continuously, the effect of gravity does increase pressure in the lower 

part of the body below the heart and decrease central venous pressure, a phenomenon called 

orthostasis. To counterbalance this effect, skeletal muscle acts as a pump to contract and 

compress veins, which contain valves that close and prevent retrograde flow of blood away from 

the heart. When the muscle relaxes, the valves open and venous blood flows toward the heart. 

During aging, malfunctioning valves can cause varicose veins and leg ulcers from abnormally 

high venous pressure in the lower extremities. Respiration also encourages venous return during 

inspiration, when intrathoracic pressure decreases and intraabdominal pressure increases. 

Expiration creates the opposite effect and reduces intrathoracic venous blood flow [26]. 

2.1.3 Fluid properties of blood 

Blood is made up of red blood cells, white blood cells, platelets, plasma, and nutritional 

macromolecules. The bone marrow houses pluripotent stem cells that self-replicate to form 
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specialized cells that enter the circulating blood. These specialized cells include erythrocytes, 

leukocytes, and megakaryocytes [25]. 

Erythrocytes are commonly known as red blood cells. They contain hemogloblin protein 

molecules that bind reversibly to oxygen molecules based on pH, temperature, and concentration 

of 2.3-diphosphoglycerate. This is important for transporting oxygen from the lungs to other 

organs. Aberrations in the protein structure of hemoglobin and in the concentration of 

erythropoietin (erythrocyte-producing hormone) in the human body can affect the availability of 

oxygen for metabolism. 

Leukocytes are commonly known as white blood cells. They are primarily responsible for helping 

the body fight against infection through the removal of foreign material and cellular debris. 

Megakaryocytes in the bone marrow divide into small fragments called platelets that enter 

circulating blood. Platelets play an important role in coagulation and cell repair when there is 

bleeding. Blood also contains macromolecules such as proteins, carbohydrates, and fatty acids 

suspended in a solution called plasma. These nutrients are transported through the circulation to 

various parts of the body for metabolism or storage. 

The constituents of blood also have an effect on hemodynamics. Most discussions of 

hemodynamics in cardiovascular physiology approximate blood as a homogeneous, 

incompressible, Newtonian fluid. This simplifies the equations used to describe hemodynamics 

and renders them practical for clinical and research purposes. However, blood is actually non-

homogeneous, compressible, and non-Newtonian because approximating the fluid properties of 

blood can sometimes lead to non-negligible errors. 

For reference, the viscosity of pure water remains constant with changes in shear rate (i.e. a 

Newtonian fluid) and is therefore classically determined by Poiseulle’s Law. In contrast, blood is a 

suspension of various cells, molecules, and other biological constituents and its viscosity changes 
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with shear rate (i.e. a non-Newtonian fluid). For this reason, Poiseulle’s Law is not accurate in 

characterizing blood. Specifically, blood is a shear-thinning fluid because viscosity decreases with 

increasing shear rate. The Fåhræus-Lindqvist phenomenon describes how blood viscosity is 

lower in vessels with diameters <0.3 mm (size of small arterioles, venules, and capillaries) [41]. In 

these small vessels, high flow rate is associated with red blood cells tending to flow in the axial 

part of the velocity profile while the rest of the blood such as plasma have lower flow rates near 

the vessel wall. This effect is modulated by the concentration of fibrinogen and the flexibility of red 

blood cells [25]. 

2.2 Systemic regulation of blood flow and normal pregnancy physiology 

The cardiovascular changes that occur in normal human pregnancy are significant and 

comprehensive. It has been observed that the heart displaces superiorly and leftward with the 

expanding uterus [42]. The ventricular wall undergoes eccentric hypertrophy primarily in the first 

trimester and later accommodates increased end-diastolic blood volume in the second and third 

trimesters [43]. The ventricular muscle has also been found to be more compliant, believed also 

to support vasodilation and larger blood volume. 

2.2.1 Hemodynamics of the arterial system in pregnancy 

These anatomical changes to the heart allow for an increased cardiac output by 30-50% 

compared to a non-pregnant woman [43]. The cardiac output increases most rapidly in the first 

trimester and plateaus by the third trimester. One study found the average cardiac output to be 

4.88 L/min pre-pregnancy and 7.34 L/min by delivery [44]. The cardiac output also redistributes in 

pregnancy with a larger percentage of blood going to the uterus and breasts compared to pre-

pregnancy (Fig. 5).  
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Figure 5 Pre-pregnancy (A) and pregnancy (B) distribution of cardiac output to end organs 

As mentioned previously, cardiac output is the product of stroke volume and heart rate. In 

pregnancy, cardiac output increases because both stroke volume and heart rate increase. 

Typically, the stroke volume increases rapidly in the first trimester, reaches its peak in mid-

gestation and falls slightly by term, whereas the heart rate increases steadily until late third 

trimester when it plateaus until term.  

Darcy’s Law states that the product of cardiac output and systemic vascular resistance are about 

equal to the difference between mean arterial pressure and right atrial pressure (or central 

venous pressure). The increase in cardiac output during pregnancy is counterbalanced by a drop 

in systemic vascular resistance, which reaches its lowest point mid-gestation and rises slightly by 

delivery. The decrease in systemic vascular resistance causes both mean arterial pressure and 

the difference between mean arterial pressure and right atrial pressure to decrease while the right 

atrial pressure stays the same [43]. Decreasing systemic vascular resistance is believed to 

prevent the heart from needing to work too hard to pump a larger blood volume throughout the 

body. This is believed to be mediated through the nitric oxide pathway resulting in vasodilation 

and increased vascular compliance [25, 43]. Fig. 6 shows the trajectory of cardiac output, mean 

arterial pressure, and systemic vascular resistance during gestation [45]. 
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Figure 6 Time-resolved graph of cardiac output (CO), mean arterial pressure (MAP), and 
systemic vascular resistance (SVR) changes throughout the course of pregnancy [45]. 
These hemodynamic alterations typically resolve 6 months after delivery. 

Although most women are able to lie supine while pregnant without experiencing hypotensive 

symptoms, up to 8% of women do experience supine hypotensive syndrome, which includes low 

blood pressure and low heart rate [43]. This is explained by compression of the inferior vena cava 

by the uterus, which decreases venous return, stroke volume, and cardiac output. In symptomatic 

women, lateral decubitus positioning is recommended to minimize the reduction in cardiac output 

[42]. 

2.2.2 Hemodynamics of the venous system in pregnancy 

Venous blood pressure in the upper extremities does not generally change with pregnancy but 

tends to rise in the lower extremities. Venous blood vessels also increase in compliance which 

leads to low flow rate and stasis. These conditions explain why pregnant women are known to 

develop or be at risk of developing thrombosis, edema, and varicose veins in the lower 

extremities. Another area where women are at risk of developing edema is in the lungs. As the 

blood volume in pregnancy increases, the colloid oncotic pressure can decrease while the 

pulmonary capillary wedge pressure (estimate of left atrial pressure) can increase. When it is 
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difficult for fluid to be reabsorbed or retained in the capillaries, fluid can potentially enter the 

alveoli and cause pulmonary edema with signs of dyspnea and reduced exercise tolerance [25]. 

2.2.3 Fluid properties of blood in pregnancy 

In pregnancy, the overall blood volume increases 40% [46]. The two main contributing factors 

are: 1) a 20-30% increase in red blood cell mass and 2) a 45% increase in plasma volume. Red 

blood cell expansion is mediated by increased production rather than the extension of cell life in 

the circulation. In pregnancy there is a higher concentration of 2,3-diphosphoglycerate (2,3-BPG) 

which encourages oxygen to dissociate from maternal hemoglobin and bind to fetal hemoglobin. 

It has been postulated that NO-mediated vasodilation of vasculature and retention of water and 

sodium cause plasma volume to increase from 3.1-4 L (middle of first trimester) to 4.7-5.2 L 

(middle of third trimester). The increase in plasma volume is generally higher than the increase in 

red blood cell mass so often hematocrit is lower in pregnant mothers than in non-pregnant 

women. 

There is a significant increase in the number of leukocytes in pregnancy with a white blood cell 

count of ~8000/mm3 in the first trimester and up to 30,000/mm3 during labor and delivery [51]. 

This is believed to result from the general stress of pregnancy rather than infection; the white 

blood cell count typically resolves post-partum [51, 57]. The increase in neutrophils accounts for 

most of this expansion. The number of lymphocytes first decreases from the first to second 

trimester, and then increases in the third trimester. The increase in monocytes has been 

interpreted as playing a role in preventing fetal allograft rejection by the maternal immune system 

[57]. 

Pregnancy is often described as a hypercoagulable state, which is believed to protect the mother 

from severe peripartum hemorrhage. However, this does put her at risk of thromboembolic 

disease considering the presence of three main contributing factors: vascular damage, venous 
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stasis, and a pro-coagulation circulatory milieu. The vascular damage comes from general 

venodilation and venous stasis from compression of the inferior vena cava as well as major pelvic 

veins [53]. Features of hypercoagulability in pregnancy include increased Protein S activity, 

increased resistance to activated Protein C (despite relatively unchanged levels of Protein C), 

and increased fibrinogen and other factors that promote thrombin production. 

The platelet count decreases in pregnancy and can be as low as 70,000-150,000/mm3 (for 

comparison, non-pregnant platelet count range is 150,000-400,000/mm3) probably because of 

increased plasma volume and increased clearance of platelets [51, 57]. This condition is called 

gestational thrombocytopenia, resolves a couple weeks after delivery, and has not been found to 

have negative effects on the pregnancy [51]. It is believed that gestational thrombocytopenia is 

balanced by increased platelet aggregability to prevent excessive bleeding. 

The composition and transport efficiency of nutrients in the circulatory system are not only 

important in pregnancy for supporting maternal health but also determine healthy fetal 

development. In pregnancy, the body’s need for iron significantly increases probably because of 

the demands of erythropoiesis, the process of generation of new red blood cells [47]. In fact, 

normal pregnant women can become slightly anemic and are encouraged to take iron 

supplements. Two other important nutrients are folate and vitamin B12, which are believed to be 

important for healthy neural tube development in the fetus as well as the prevention of anemia. 

In pregnancy, whole blood viscosity decreases as gestation progresses. This primarily results 

from the increase in plasma volume outpacing the increase in red blood cell mass, sometimes 

termed “hemodilution,” a phenomenon reflected by clinically decreased hematocrit [48]. Since 

blood is a non-Newtonian, shear-thinning fluid, its viscosity is higher at low shear rates than at 

high shear rates. At low shear rates, such as in small veins and in the intervillous space of the 

placenta, the viscosity is high. High viscosity enhances red cell aggregation and impedes flow but 

the lower hematocrit of maternal blood counterbalances this effect by lowering viscosity. In 
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general, it is believed that low viscosity of blood plays a role in low resistance blood flow in 

pregnancy to ensure efficient transfer of nutrients in the placenta [43]. 

2.3 Normal physiology of placental development, function, and remodeling 

of uteroplacental circulation 

2.3.1 Stages of placental development 

The multi-functional nature of the placenta as the “fetal renal, respiratory, hepatic, 

gastrointestinal, endocrine, and immune systems” [19] makes it a profoundly unique organ of the 

human body with significant consequences of long-term health of mother and child. Figure 7 

outlines the stages of placental development in each trimester, the details of which will be 

explained in the ensuing paragraphs. For the purpose of understanding the stages of placental 

development it is helpful to summarize the key components of a mature placenta. The placenta is 

a disc-shaped organ attached to the inner uterine wall near the anterior or posterior side of the 

maternal pelvis. The placenta itself is divided into the maternal side and the fetal side. On the 

maternal side is the uteroplacental interface, which is also called the basal plate. At this junction 

is where maternal blood enters the central cavity of the placenta, called the intervillous space 

(IVS). The fetal side is also called the chorionic plate, from which the umbilical cord extends 

outward and attaches to the umbilicus of the fetus. Within the chorionic surface the umbilical cord 

is connected to a network of vessels arranged in a tree-like structure called villi. The terminal 

branches of the fetal villi project into the intervillous space and are therefore bathed by maternal 

blood. In this configuration, the fetal circulation and maternal circulation never mix but oxygen, 

metabolites, and waste are transferable in a regulated manner across a thin layer of cells on the 

surface of the fetal villi [49]. In this way, the placenta temporarily performs the functions of various 

organs for the fetus while the fetus’s own organs are in development. 
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Figure 7 Stages of placental development from first to third trimester (adapted from [42] 
and [50]). In the first trimester, histiotrophic nutrition provided by endometrial glands 
supports cell differentiation in the blastocyst to form the primitive structures of the 
placenta. In the second trimester, the remodeled maternal spiral arteries become patent 
and deliver blood to the intervillous space. Nutrients and waste pass between the maternal 
blood pool in the intervillous space and the fetal circulation through the membrane of the 
fetal villi. By the third trimester, the mature placenta has formed lobular structures on the 
maternal surface and the umbilical cord attaches near the center of the placenta on the 
fetal surface. 

Placental development in the first trimester consists of a series of cellular changes that occur 

during fertilization and implantation. In humans, fertilization occurs in the fallopian tubes of the 

mother, after which the zygote differentiates into a blastocyst as it travels into the uterine cavity. 

The blastocyst orients such that the inner cell mass and the trophectoderm are near the uterine 

wall. Then, the trophectoderm is expelled from the blastocyst. The expelled trophectoderm is 

called extravillous trophoblast (EVT), meaning that it will not be directly part of the placenta, but it 

plays the key role of invading the inner third of the myometrium for secure anchorage of the 

placenta. Furthermore, the EVTs differentiate into endovascular EVTs and interstitial EVTs. The 

endovascular EVTs migrate into the lumens of the maternal spiral arteries and partially replace 

the smooth muscle layer and endothelium of the terminal segments with fibrinoid tissue [42, 51]. 

The interstitial EVTs facilitate this process in the stroma surrounding the spiral arteries. 

For the first 9 weeks or so of pregnancy (most of the first trimester), the growing placenta, 

umbilical cord, and embryo are supported by histiotrophic nutrition [52]. At this stage, the 
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endovascular EVTs occlude the spiral arteries while remodeling occurs such that only small 

amounts of blood plasma can enter through. Nutrients from this plasma and surrounding 

endometrial glands nourish the young placenta and fetus in early development. The placenta 

begins to form as syncytiotrophoblast cells surround the blastocyst, lacunar spaces enlarge to 

form the IVS, hemangioblasts differentiate to form the fetal villi, and part of the yolk sac becomes 

umbilical cord. 

By the end of the first trimester, the plugs formed by endovascular EVTs occluding the spiral 

arteries disintegrate and maternal blood carrying oxygen and nutrients enter the IVS. This marks 

the beginning of placental development supported by hemotrophic nutrition [52], which lasts 

throughout the second and third trimesters. The quality of hemotrophic nutrition hinges on the 

terminal ends of the spiral arteries to properly convert from narrow vessels (0.4-0.5 mm diameter) 

into wide, trumpet-like conduits (2-3 mm diameter) opening into the IVS. Mathematical modeling 

has demonstrated that there are essential hemodynamic consequences in the IVS from EVT-

mediated remodeling of the spiral arteries [53]. First, the wide terminal vessels help slow down 

the speed of inflowing blood to prevent damage to fragile villi based on a modified version of 

Poiseulle’s equation (Fig. 8a). Second, slow blood flow maintains a circulation duration of 

approximately 25 seconds in the IVS to allow time for transport of oxygen and nutrients. Third, 

maintaining lower pressure in the IVS compared to fetal villi ensures that the fetal villi are able to 

dilate, thereby maintaining a thin barrier for oxygen and nutrients to cross (Fig. 8b). Fourth, loss 

of vasoactive smooth muscle cells allows the constancy of flow to be maintained to prevent a 

situation where intermittent delivery of oxygen would lead to placental oxidative stress. 
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Figure 8 Results from mathematical model of spiral artery remodeling presented in Burton 
et al. [53]; a) graph showing dramatic decrease in speed of blood flow when the radius of 
the spiral artery increases, b) graph showing decrease in pressure along the unremodeled 
proximal end of the spiral artery until it matches the pressure of the IVS in the wide, 
trumpet-like terminal end of the spiral artery after remodeling. 

Although blood is able to percolate freely throughout most of the IVS, the placenta is partially 

divided into 10-40 lobules by septae [42, 54]. Each lobule consists of one spiral artery ejecting 

blood toward two or three fetal stem villi. The syncytiotrophoblast cells comprising the thin 

membrane on the fetal villi mediate regulated transport of substances such as water, 

oxygen/carbon dioxide, proteins, steroid hormones, inflammatory factors, and waste into and out 

of the fetal circulation. Oxygen and other gases cross by diffusion whereas larger substances 

cross by channels, transporters, vesicles, receptor-mediated processes, and other mechanisms 

[42]. In fact, researchers have found evidence that the placenta is a metabolically active organ 

with oxygen consumption matching that of the fetus [55]. It also has high expression of enzymes 

for glucose metabolism [56]. 

Hemotrophic nutrition of the fetus and placenta continues in the third trimester until term. The 

thickness of the placenta stops increasing at about 2.3-3 cm in the mid-second trimester but the 

circumference continuously increases until term [42, 57]. The mature placenta is measured at 15-

20 cm in diameter [42, 57] and weighs 450-508 g. The fetal villous surface amounts to about 10-

14 m2 in surface area available for exchange [42]. Placental biologists have observed similarities 
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between third trimester placental tissue and the aging of other organs [58]. The underlying 

process is called cellular senescence, when irreversible cell cycle arrest causes the cell to cease 

dividing. It has many characteristic biomolecular features including unrepaired DNA damage. The 

fusion of cytotrophoblasts to form multi-nuclear syncytiotrophoblasts is an important process in 

pregnancy. This process begins in early pregnancy and continues as syncytiotrophoblasts at the 

end of terminal villi often break off, enter maternal blood, and must be constantly regenerated 

until term. Research has shown that syncytiotrophoblast cells inherently present with 

characteristic features of senescent cells, such as the inability to divide and minimal DNA 

synthesis. Senescent cells in the maternal stroma and fetal membranes have also been observed 

to play an important role in concluding pregnancy. It is believed that one of the early processes of 

labor is the release of sterile inflammatory signals from these cells. This is followed by remodeling 

of the uterus and cervix to prepare for birth. 

2.3.2 Anatomical and physiological remodeling of maternal pelvic 

vasculature 

The surrounding maternal vasculature also undergoes remodeling during placental development 

as the placenta receives its blood supply from a network of vessels in the female pelvis. 

Anatomically, the left and right common iliac arteries branch off of the aorta and divide into the left 

and right internal and external iliac arteries. On each side, the internal iliac artery divides into 

several branches providing oxygenated blood to organs and tissues in the gluteal and pelvic 

region. One of these branches is the uterine artery, a tortuous vessel that eventually attaches to 

the uterine wall. It is believed that the tortuosity of the uterine arteries helps accommodate 

enlargement of the uterus by extending its undulations, potentially preventing rupture during 

pregnancy [49] (Fig. 9a,b). There may be some natural anatomical variation in the origin of the 

uterine artery in some women. The uterus is supplied by two arterial systems (uterine and ovarian 

arteries) and drained by two venous plexuses (uterine and ovarian veins). 
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The uterus receives oxygenated blood primarily from the uterine arteries and ovarian arteries 

joined by the utero-ovarian communicating arteries. There is also a small contribution from the 

blood vessels contained within the broad ligament, a sheet of tissue draped over the ovaries, 

ovarian arteries, uterine arteries, and other tissues supporting the uterus [49]. Studies have 

shown that occluding the internal iliac arteries lead to recruitment of collateral flow from branches 

of the aorta, external iliac artery, and femoral artery [59]. The redundancy in blood supply 

appears to play a protective role in maintaining blood flow to the uterus [49]. 

The uterine arteries ascend the two sides of the uterine wall within the broad ligament. When they 

penetrate the myometrium, they divide into smaller branches called the arcuate arteries which 

course in a semicircular pattern in the outer third of the myometrium. There are anastomoses that 

form between the left and right arcuate arteries and between arteries and veins. The arcuate 

arteries branch into the radial arteries which head towards the endometrium and terminate as 

spiral arteries to supply blood flow to the endometrium [59] (Fig. 9c). 

 

a b c

 

Figure 9 Vascular anatomy of a) non-pregnant female and b) pregnant female. Panel c 
shows a cross section of the uterus showing the smaller branches of the myometrial 
arteries feeding the placenta in pregnancy [49] 
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As gestation progresses, it has been observed that uterine arteries carry 20-50 mL/min of blood 

in the non-pregnant state but this increases up to 800 mL/min of blood in the pregnant state [60, 

61]. This 10-fold increase is mediated by a decrease in uterine artery resistance since the 

pressure=flow*resistance (Darcy’s Law) and pressure is generally maintained constant. Recall 

that the Hagen-Poiseulle equation states that the resistance (R)=8µL/(πr4), where µ = fluid 

viscosity, L = length of pipe, and r = radius of pipe. Although elongation of the uterine artery alone 

would increase R, it is overcompensated by circumferential remodeling (increased r). As the 

fourth power in the denominator indicates, an increase in the uterine artery radius contributes 

significantly to the decrease in R. Specifically, this vasodilation has been described as “outward 

hypertrophic” meaning an enlargement of lumen area without much wall thickening. Based on 

animal studies, both smooth muscle cell hypertrophy and hyperplasia contribute to this luminal 

enlargement [60, 62]. 

Interestingly, the uterine artery diameter increases weeks before the 10th week when trophoblasts 

invade the spiral arteries. This appears to be anticipatory in order to provide enough influx of 

blood flow at the start of hemotrophic nutrition around the 13th week. The blood flow increase 

begins to plateau by the third trimester [57, 63], while the fetal weight begins to increase in the 

second trimester with fastest growth in the late third trimester [49, 64]. Finally, there is a decrease 

in uterine artery flow, which is consistent with observed increase in myogenic tone at the end of 

the pregnancy to reduce hemorrhage [46, 62, 65]. The time course of all these hemodynamic 

changes in the female pelvis demonstrates how the blood supply is prepared and maintained to 

support the pregnancy yet without too much blood loss by term. 

2.4 Pathophysiology of hypertensive pregnancy disorders 

2.4.1 Historical progression in the understanding of HPD 



www.manaraa.com

26 

 

The current clinical understanding of hypertensive pregnancy disorders traces back to 3000 B.C., 

which is estimated to mark the earliest written reports of eclampsia from nearly every continent 

[66]. Prior to the era of scientific inquiry, various theories proposed included possession by evil 

spirits in biblical times and imbalance of “humours” by Hippocrates [67]. The earliest risk factor of 

pregnancy-associated convulsions was primiparity reported in 1694. In the 1840s, proteinuria was 

discovered as an early manifestation of eclampsia, leading to the term “preeclampsia.” At this 

time, however, toxemia was believed to be the culprit, leading to the practice of blood-letting in 

attempt to temper the disease. Following the invention of the blood pressure cuff in 1897, 

hypertension was discovered in some pregnant women with and without edema, proteinuria, and 

convulsions. In 1976, the phrase “hypertensive disorders of pregnancy” was coined to convey the 

spectrum of this disease encompassing gestational hypertension, preeclampsia, eclampsia and 

their subtypes [68]. Starting in the 1960s, placental examinations and placental bed biopsies 

revealed evidence of shallow implantation in cases of HPD. Specifically, it appeared that the 

trophoblasts failed to fully invade the spiral arteries at the inner third of the uterine myometrium, 

resulting in persistence of narrow, muscular vessel walls rather than fully converting to the 

necessary wide, flaccid conduits needed for adequate delivery of blood flow to the placenta and 

fetus (Fig. 10). 
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Figure 10 Comparison of normal and abnormal spiral artery morphology commonly 
observed in preeclampsia: a) diagram of physiologic terminal spiral artery conversion to 
large funnel-like vessels, b) diagram of narrow spiral arteries restricting blood flow into 
the placenta, c) normal basal plate vessel from normal uterine remodeling, d) basal plate 
vessel with visible thick, smooth muscle layer of vessel wall because of incompletely 
remodeled spiral artery, e) basal plate vessel with acute atherosis and fibrinoid necrosis 
possibly because of poor spiral artery remodeling. Panels a,b were adapted from [53] and 
pathology images in panels c,d,e were provided by Rebecca Linn, MD at Children’s 
Hospital of Philadelphia. 

However, the view that defective trophoblast invasion of the spiral arteries was the primary cause 

of HPD was later challenged with the observation that some women with preeclampsia do not 

have placental disease while placental disease can be present in other women who do not have 

preeclampsia yet have small-for-gestational age fetuses [69]. 

In the 1980s, attention began to shift toward endothelial dysfunction as the phenomenon 

explaining the multi-organ involvement in HPD as more clinical features were described. These 

included glomerular endotheliosis, liver disease, and eclamptic convulsions. Serological analysis 

of pregnant women with and without preeclampsia showed similar biochemical profiles as those 

with hemolytic uremic syndrome, pointing to possible endothelial injury activating the coagulation 

cascade and a maternal circulatory environment that is hypersensitive to vasopressors [70]. 

Some explanations for endothelial dysfunction in pregnancy are pre-existing chronic 

hypertension, type II diabetes, and generalized maternal inflammatory response [69, 71]. 
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2.4.2 Overview of current theories regarding placental and cardiovascular 

origins of HPD 

Today, HPD, particularly preeclampsia, continues to be referred to as “a disease of theories” [66]. 

The unifying theme in all these theories appears to be the debate over how placental disease is 

connected with the maternal systemic manifestations, given that both do not always occur in 

HPD-related adverse pregnancy outcomes. Roberts et al. suggest that shallow implantation of the 

placenta with poorly remodeled spiral arteries leads to release of biochemical factors that injure 

the endothelial cells of the rest of the circulation [70]. This appears to be consistent with 

glomerular endotheliosis and other signs of organ damage. This could also explain why HPD is 

cured by delivery of the placenta [67, 70]. On the other hand, Kalafat et al. argue that placental 

malperfusion is secondary to cardiovascular impairment because endothelial dysfunction can 

impair the response of uteroplacental arteries to vasodilators and other remodeling factors [72] 

(Fig. 11). 
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Figure 11  One theory proposed to explain the mechanism of preeclampsia states that 
initial poor cardiac reserve makes the maternal cardiovascular system susceptible to 
disease because of poor adaptation to the demanding physiological changes of pregnancy 
[73]. This positive feedback loop puts mother and fetus at further risk over time. This leads 
to the final common pathway of signs and symptoms commonly observed in patients 
include hypertension and proteinuria. 

A convincing perspective held by many today takes into account the two subtypes of 

preeclampsia: early-onset preeclampsia is defined as disease detected prior to 34 weeks 

gestation and late-onset preeclampsia as disease detected after 34 weeks gestation. Studies 

have shown that early-onset preeclampsia is more strongly associated with fetal growth 

restriction, placental lesions related to maternal underperfusion, and lower placental weight 

compared to late-onset preeclampsia [74, 75]. Late-onset preeclampsia is more associated with 

maternal obesity and large-for-gestational age fetuses [76, 77]. As a result, some have suggested 

viewing early-onset and late-onset preeclampsia as having two separate etiologies, placental or 

maternal, respectively [74]. 

2.4.3 Clinical perspective of hypertensive pregnancy disorders 
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2.4.3.1 Categorization of HPD 

HPD is a broad term encompassing various forms of hypertension during pregnancy, including 

chronic hypertension, gestational hypertension, preeclampsia, and eclampsia. Chronic 

hypertension refers to preexisting hypertension prior to 20 weeks gestation while gestational 

hypertension is new onset of hypertension after 20 weeks of gestation. Preeclampsia is defined 

as new onset of hypertension after 20 weeks of gestation and proteinuria or, in the absence of 

proteinuria, with the presence of thrombocytopenia, renal dysfunction, liver dysfunction, or 

pulmonary edema [78]. Figure 12 is a diagram illustrating the various types of HPD. Preeclampsia 

is the primary focus in the following sections, although there may be overlap with other forms of 

HPD in terms of risk factors, screening, and treatment. 

 

Figure 12 Types of HPD arranged by timing of occurrence during gestation, signs, and 
symptoms 

2.4.3.2 Risk Factors of HPD 

The risk factors for HPD can generally be divided into two categories [78]. First, the majority of 

the risk factors relate to maternal predisposition to develop cardiovascular disease, including 

elevated body mass index (BMI), caloric excess, smoking, African American ancestry, high blood 

pressure, older age, and diabetes. These characteristics warrant close monitoring during 

pregnancy for development of preeclampsia. Secondly, pregnancy-specific characteristics such 

as nulliparity, excessive placental size, barrier contraception, and multiple gestations are 
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placental or pregnancy-specific risks of preeclampsia [12]. This framework is closely connected to 

current theories about the mechanism of preeclampsia. Some argue that the mother’s 

predisposition to cardiovascular disease entails subclinical endothelial dysfunction [72] that can 

lead to the development of placental lesions and a deficit of angiogenesis during pregnancy. 

Others identify insufficient trophoblast invasion as inciting reduced placental perfusion that affects 

maternal cardiovascular health [53]. There may also be a genetic component of preeclampsia risk 

that is still being investigated [79]. The connection between risk factors and the cause of 

preeclampsia is still an active area of research. In this thesis specifically, MRI techniques are 

developed to assess endothelial dysfunction by estimating pulse wave velocity in the maternal 

arteries and to assess spiral artery function by characterizing placental perfusion distribution. 

2.4.3.3 Signs and Symptoms of HPD 

Patients with preeclampsia can present with concerning symptoms such as swelling, headaches, 

right upper abdominal or shoulder pain, and shortness of breath [80]. Physicians typically follow 

up with blood pressure monitoring and urine analysis. A systolic blood pressure of >140 mmHg 

(or diastolic blood pressure of 90 mmHg) on two separate occasions at least 4 hours apart after 

20 weeks gestation is cause for concern [78]. Elevated protein in the urine that meets a clinical 

threshold, such as a dipstick reading of 2+, could also meet the criteria for preeclampsia [78]. 

2.4.3.4 Treatment Options for HPD 

As a preventative measure, United States guidelines recommend prescribing low-dose aspirin (81 

mg/day) to asymptomatic patients with two or more risk factors for preeclampsia [78, 81]. This 

was based on clinical studies that showed that 60-150 mg/day of aspirin led to a decrease in 

preeclampsia risk by 24% [81]. For preeclamptic women who have already become symptomatic 

after 20 weeks, physicians have to make the complex decision of whether to induce preterm labor 

to control the disease or proceed with expectant management. More advanced tests to aid in this 
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decision include uric acid testing, fetal ultrasound, and fetal antepartum testing [78]. The specific 

resources available at the healthcare facility for maternal and neonatal care are also taken into 

consideration. A gestational hypertensive pregnancy or preeclamptic pregnancy without severe 

features such as thrombocytopenia, impaired liver function, and pulmonary edema are generally 

monitored until 37 weeks gestation, after which delivery is recommended. Continued observation 

can involve weekly laboratory testing and serial ultrasonography. However, if the pregnancy is 

complicated by severe features or dire events such as placental abruption, then induction of labor 

is more heavily considered [78]. 

2.4.3.5 Intrapartum Care of HPD Patients 

The two main goals of managing women with preeclampsia during labor and delivery aside from 

routine prenatal care, are the prevention of seizures and the control of hypertension [78]. For 

women with preeclampsia and severe features, it is recommended to administer magnesium 

sulfate to prevent seizures. In addition, these patients should also be prescribed antihypertensive 

medication—most commonly labetalol, hydralazine, or nifedipine—to prevent congestive heart 

failure, myocardial ischemia, renal injury or failure, and ischemic or hemorrhagic stroke. 

Antihypertensive therapy should begin immediately as soon as persistent severe hypertension 

>160/110 mmHg is detected. Milder cases such as those with gestational hypertension or 

preeclampsia without severe features should be monitored in case of developing severe features. 

The mode of delivery should be considered on an individual basis. Induction of labor with vaginal 

delivery is still possible at later gestational ages. Vaginal delivery is less safe for preeclampsia 

with severe features which tend to involve low-birth-weight infants. Records show that the rate of 

cesarean section is 97% at <28 weeks gestation and 65% at 28-32 weeks gestation. Epidural or 

spinal anesthesia is safe for pain management as long as the patient is hematologically stable 

[78]. 
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2.4.3.6 Postpartum Care of HPD Patients  

After delivery, women with preeclampsia should be continually monitored for symptoms that can 

be indicative of eclampsia, pulmonary edema, or stroke. Non-steroidal anti-inflammatory drugs 

(NSAIDs) that are used for pain management can exacerbate vasoconstriction, swelling, and 

sympathetic nervous system activation, although multiple studies have not shown an increase in 

blood pressure with NSAID use in patients with preeclampsia [82, 83]. Women with preeclampsia 

are at double the risk of CVD and five times the risk of hypertension in later years [84]. This can 

probably be explained by the shared mechanism of endothelial dysfunction in both 

atherosclerosis and preeclampsia [78]. It is still unclear if preeclampsia leads to cardiovascular 

disease or rather that pregnancy uncovers underlying preexisting risk of cardiovascular disease 

that manifests as preeclampsia. Whatever the case may be, women are advised to make lifestyle 

modifications (diet, exercise, weight management) to control risk factors for cardiovascular 

disease and to obtain routine primary care examinations. They should also be made aware that 

they are at an increased risk of developing preeclampsia again in a future pregnancy. 

There may also be life-long consequences of preeclampsia for the infant. Studies have shown 

that infants born from hypertensive pregnancies have a higher risk of low birth weight compared 

to normotensive pregnancies [76, 85]. The risk of perinatal mortality is also higher for 

preeclamptic pregnancies compared to normotensive pregnancies with largest causes being 

placental insufficiency, placental abruption, and prematurity [12]. A meta-analysis on 

cardiovascular risk factors of children born from preeclampsia report that they have 0.6 kg/m2 

higher BMI, 2.5 mmHg higher systolic and 1.4 mmHg higher diastolic blood pressures [86]. 
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2.4.4 Ongoing investigations in basic science, treatment, and technological 

assessment of HPD 

Investigations using molecular assays [87] and animal models [88] continue to mine for the cause 

of HPD. However, identifying the mechanism of this disease is not only important for driving 

clinical trials exploring a wide array of pharmacological treatments [13, 89, 90], but is also critical 

to improving tools used by obstetrician-gynecologists for efficiently identifying patients who are at 

highest risk and would benefit from those treatments. The next section introduces the non-

invasive technologies (ultrasound and magnetic resonance imaging) that were investigated in this 

dissertation for potential in improving the understanding of HPD pathophysiology and clinical risk 

stratification. 
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CHAPTER 3: NON-INVASIVE TECHNOLOGIES TO ASSESS 

CARDIOVASCULAR DISEASE 

In this chapter, an overview of Doppler ultrasound, flow and perfusion magnetic resonance 

imaging (MRI) is presented. These technologies have been well-explored in various 

cardiovascular disease and continue to be of interest in clinical obstetrics and obstetrics research. 

This summary is designed to provide the foundational physical and engineering principles of the 

research presented in Chapters 4-7.  

3.1 Principles of Doppler ultrasound 

3.1.1 Signal generation 

Ultrasonography operates based on the principle that high frequency (2-15 MHz) sound waves 

travel through the human body as mechanical vibrations. These sound waves are generated by 

piezoelectric crystals in the ultrasound probe, also called a transducer. The speed of sound, c, 

varies based on the type of medium it travels in. It is about 1.45 mm/µs in fat, 1.58 mm/µs in 

muscle, and 1.57 mm/µs in blood. The average c is said to be 1.54 mm/µs [91]. The wavelength, 

l, of the sound wave travelling through tissue depends on the frequency, f, of the sound pulses 

generated by the transducer according to the relationship l=c/f. The longer the wavelength, the 

greater the penetration into the body but the lower the spatial resolution of the image. Conversely, 

shorter wavelengths help produce high resolution images but with shallower penetration. 

The energy delivered to the tissue by ultrasound imaging can be described by amplitude, power, 

and intensity. Amplitude (P) is the amount of increase and decrease in mechanical vibration 

pressure, described in units of Pa. Intensity (I) describes the amount of energy per unit area, 

expressed in units of mW/cm2. Power is the overall energy transfer and is measured in W. Power 
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and intensity decrease as sound waves travel deeper into tissue. The amount of energy delivered 

is important in obstetric US safety considerations. Some of the ultrasound energy can be 

absorbed by the tissue which results in heating so the instrument display also includes a thermal 

index (TI) estimating the rise in temperature based on time-averaged acoustic power/intensity, 

sound beam properties, and tissue properties. Obstetric guidelines state that temperature rise of 

less than 1.5 degrees Celsius is unlikely to harm the mother and fetus [92, 93]. However, pulsed 

Doppler ultrasound does deposit more power than standard B-mode scanning so it is typically 

reserved for second and third trimester exams (see Section 3.1.6). Another concern of ultrasound 

is that high amplitude pressure waves can potentially cause cavitation, the collapse of nearby gas 

bubbles, instrument manufacturers include a mechanical index (MI) to alert the sonographer to 

the amount of cavitation risk. However, in obstetrics cavitation is rarely a concern because the 

pregnant uterus does not contain significant gas bodies [92, 93]. The American Institute of 

Ultrasound in Medicine (AIUM) recommends that sonographers use energy levels that are “as low 

as reasonably achievable” (ALARA principle) to minimize risk of tissue damage [94]. 

US intensity decreases as the waves travel deeper into tissue. Some of the energy becomes 

absorbed as previously described, and the rest can become reflected or scattered. Different 

tissues have different acoustic properties, called acoustic impedances. Tissues of different 

acoustic impedances positioned next to each other form an interface off of which US waves 

reflect. The echo that forms at the interface is based on the acoustic impedances of the tissues. 

This is quantified by the amplitude reflection coefficient R=(Z2-Z1)/(Z2+Z1), where Z1 and Z2 are 

the acoustic impedances of tissues 1 and 2, respectively. A common example is the visibility of 

the smooth blood vessel wall seen in US imaging because of the reflection of US waves at the 

interface between the vessel wall and the blood pool separating two distinct acoustic impedances 

(high R). Some tissues have rough surfaces or many small interfaces compared to the US 

wavelength. These tissues tend to form scattered echoes which propagate in various different 

directions with relatively homogeneous amplitude. Doppler US, a type of US which measures 
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blood flow, uses the principle of scattering by transmitting and receiving waves which scatter from 

the moving red blood cells. The red blood cells have scattering properties because they are very 

small compared to the Doppler US wavelength [91]. 

3.1.2 Image formation 

The level of detail visible in an image depends on the lateral resolution, axial resolution, and slice 

thickness. A high frequency ultrasound probe enables high lateral resolution, which requires a 

small beam in the focal region so that two reflecting objects (artery and tissue, for example) 

positioned close together can be distinguished on the screen. High frequency ultrasound is also 

advantageous for improving axial resolution by shortening pulse durations to distinguish between 

reflectors that are placed closely along the ultrasound beam. Slice thickness, or elevational 

resolution, describes how well the US instrument can focus on objects perpendicular to the 

imaging plane. This is typically the worst dimension of resolution in US so it is rarely considered  

when optimizing obstetric US [91]. 

The temporal resolution of US determines how quickly changes in moving objects of the body are 

reflected in the real-time image as the sonographer moves the probe or keeps it stationary. A 

single frame is composed of multiple beam lines, and each beam line is composed of an echo 

transmitted and received by a columnar element of the probe. The frame rate is how quickly a 

frame is formed. Since the time (T) to collect one beam line is T=2D/c, where D=maximum depth 

and c=speed of sound in tissue, then the time to collect one frame (Tf) is Tf=2DN/c, where 

N=number of beam lines. The maximum frame rate FRmax=1/Tf=c/(2DN). The sonographer can 

usually control FRmax by changing the depth or the number of beam lines. There are typically 

between 100 to 250 beam lines. The echoes from each element are stored as amplitude over 

depth (time of pulse arrival). After collection, the echoes undergo a series of signal processing 

steps. Most common US images are in B-mode format which encodes amplitude of the echoes in 
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gray scale brightness. The signals are arranged in matrix form for display (e.g. 500x500 pixels2) 

[91]. 

3.1.3 Types of transducers 

One of the ways to optimize image quality is the choice of the ultrasound transducer, of which 

there are several types used clinically. The first is a linear array transducer. It contains 200 or 

more separate elements arranged side-by-side. 15-20 elements are activated simultaneously to 

generate an ultrasound wave and receive an echo. After a small temporal delay, the subsequent 

group of elements is activated. This process is repeated from one end of the transducer to the 

other. The beam lines are arranged in straight lines, and the resulting image is rectangular. The 

linear array is often used for peripheral vascular applications, such as imaging vessels of the arm 

or the neck.  

The second type of ultrasound transducer is a curvilinear array. The shape of the curvilinear 

transducer is convex at the front. The elements inside are arranged similarly to the linear array 

and each group of elements is activated one at a time, extending from one end to the other. Due 

to the convex shape the beam lines are arranged in a fanlike fashion and the resulting image is a 

sector shape. The curvilinear array is useful for imaging deep structures such as in obstetrics 

looking at the fetus and placenta in the abdominopelvic region.  

The third type of ultrasound transducer is a phased array transducer. The distinguishing feature 

of the phased array transducer is that it contains about 120 rectangular elements side-by-side but 

all of them are activated at once. The ultrasound beam changes directionality by activating small 

time delays between the elements; this allows for scanning a large field of view. The phased 

array transducer is useful for imaging the heart by scanning between the ribs or looking at 

vessels of the brain through the temporal bone [91]. 
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In obstetrics the transabdominal probe and transvaginal probe are commonly used. The 

transabdominal probe is a typical example of a curvilinear array which is favored because it has a 

large penetration depth. This is enabled by a frequency range of 3-5 MHz, but the low frequency 

generates low spatial resolution. However, in obese pregnant women and in general early 

pregnancy, the transvaginal probe which is designed to contain a curvilinear array or phased 

array is more favorable because it can image tissue closer to the surface even with lower 

penetration depth using higher frequency (5-7.5 MHz) which maintains high spatial resolution [42, 

95]. Even though both types of transducers can be used to image the uterine artery and spiral 

artery, they have limited field of view so only 3-4 cm of the vessel is visible at a time. In fact, 

sonographers often identify vessels based on the velocity waveform shape while turning on color 

flow mode because vessel borders are not very clear [96]. 

 

3.1.4 Doppler ultrasound 

Measurement of blood flow using Doppler US hinges on the Doppler effect, a phenomenon 

describing the relationship between the change in frequency of the optical or acoustic waves 

transferred from source to detector and the movement of the source or detector. The Doppler 

effect was first published by Austrian mathematician and physicist Christian Doppler in 1841 [57]. 

When applied to blood flow, the shift in frequency (fD) between transmitted frequency (f0) and 

reflected frequency (fR) is defined as fD=fR-f0=(2×f0×V×cosq)/c, where V=blood flow velocity, q=angle 

between US beam in the echo direction and flow direction, and c=speed of sound in tissue [91]. 

While technological advancement has led to several forms of Doppler US, the primary form used 

clinically is color pulsed wave Doppler in duplex imaging mode with spectral analysis. 

In pulsed wave Doppler, the US probe transmits short bursts of signal into the tissue and receives 

scattered and reflected echoes. The echoes are amplified, divided into two channels, 
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demodulated, passed through a sample-and-hold circuit, and filtered. The two channels are 

separated by a 90-degree phase shift to enable detection of flow direction toward and away from 

the probe [91].  

Blood flow is most easily quantified using spectral analysis. Recall that velocity is encoded by 

frequency shift (fD). Practically, the received echo signal contains multiple frequencies combined 

in a complex signal because the typical blood vessel has a non-uniform distribution of velocities 

(e.g. laminar flow) within a cross section. This is graphically displayed with the y-axis in units of 

frequency, the x-axis in units of time, and the brightness of each pixel corresponding to the 

amplitude of the waves of each frequency bin. 

Pulsed wave Doppler samples a volume for measurement at a certain depth of the beam, which 

helps with precision to measure flow in a single vessel when there are multiple vessels in the path 

of the beam. To find the location of blood flow measurement, the sonographer is typically guided 

by a combination of grayscale imaging and color flow imaging (duplex imaging). Grayscale 

imaging, also known as the B-mode, is conventional ultrasonography where the echoes forming 

the image are based on the acoustic properties of the tissue being captured. Superimposed on 

this image is a color flow Doppler image, generated by an average of the velocities measured. 

The brightness of the colors corresponds to velocity with the color blue meaning away from the 

probe and the color red meaning toward the probe. 

A major concern with Doppler US is the potential of aliasing artifacts. Aliasing occurs when the 

measured velocity exceeds the upper limit set by the instrument. This is manifested by a 

wraparound of the measured velocity typically from the positive to negative polarity. Consider the 

time between pulses transmitted, Td, c=speed of sound in tissue, d=depth, and the pulse 

repetition frequency, PRF=1/Td=c/(2d). To mitigate aliasing, it is recommended that the operator 

increase the PRF which increases the y-axis velocity range or lower the zero-velocity baseline 

which increases the y-axis limit in one direction. In order to prevent aliasing by modulating the 
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PRF, it must be set to at least twice the echo frequency shift (fD). This is called the Nyquist 

criterion, which when applied to US is governed by the equation Vmax=(PRF×c)/(4×f0)=c2/(8×f0×d), 

where Vmax=maximum velocity measurable without aliasing, c=speed of sound in tissue, 

f0=transmitted frequency, and d=depth of vessel [91]. 

There are two other forms of Doppler US that, though not used in this study, do have advantages 

and are therefore included in many clinical instruments. Continuous wave Doppler is an operating 

mode in which the transmitted ultrasound beam is a continuous wave rather than a pulsed wave. 

It does not localize the measurement to a particular depth of the ultrasound beam to distinguish 

between multiple vessels in its path, so it is generally used for large vessels such as the aorta. 

Continuous wave Doppler is also simpler and therefore more available in inexpensive systems 

[92]. Power Doppler is another operating mode which processes the Doppler signal differently 

from pulsed wave Doppler by displaying the power of the Doppler signal rather than the velocity 

of moving blood. This means that the power Doppler signal is related to the concentration of red 

blood cells that are moving and their velocity. The advantage is that it is not susceptible to 

aliasing, less dependent on the beam angle, and more sensitive to low flow. However, the main 

limitation is that it does not display the direction of flow [91]. 

3.1.5 Echocardiography and peripheral vascular ultrasound in general 

cardiovascular medicine 

Ultrasound of the heart, also known as echocardiography, became clinically useful in the 1970s. 

There were other procedures in place to examine the heart, but they had limitations. For example, 

physical examination and electrocardiography were not found to be very specific diagnostic tools 

for heart disease [97]. Also invasive cardiac catheterization, though specific, was dangerous due 

to its invasiveness. Currently, examining cardiovascular structure, function, and development 

involves three main modes of ultrasound. The first is M-mode, which displays a one-dimensional 
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projection of tissue to track its position over time. This allows the sonographer to assess the 

motion of the myocardial wall, heart valves, and aortic root. The second mode of ultrasound is 

two-dimensional (2D) imaging, which provides cross-sectional views of the heart to visualize 

anatomical detail. Echocardiographers developed ways to measure function based on these 

views, such as calculating ejection fraction and cardiac output based on tracings of the left 

ventricle in the images. The third type of ultrasound examination is Doppler ultrasound, which 

allows one to measure the velocity and direction of blood flow. Specifically, color flow mapping 

has been useful for assessing valvular regurgitation and intracardiac shunting. Also, using 

Bernoulli’s equation, one can estimate pressure gradients across different chambers of the heart, 

which is related to some cardiac diseases. Doppler ultrasound can also be used to measure the 

velocity of movement of the tissue, not just blood, such as when looking for asynchrony of 

myocardial contraction after a heart attack. Echocardiography is usually done transthoracically, 

but sometimes it is done in transesophageally using an esophageal probe that places the 

transducer closer to the heart. The basic echocardiography exam involves looking at structures of 

the heart in four main locations. The first is the parasternal notch, which enables visualization of 

the long axis of the left atrium, left ventricle, and aorta. A slight tilt would allow one to look at the 

right atrium, tricuspid valve, right ventricle, and another slight shift would allow one to visualize 

the pulmonary valve and main pulmonary artery. The probe can be rotated to show the short axis 

views of some of these chambers. Second, the apical window shows the four chambers of the 

heart and five chambers when adding the left ventricular outflow tract. Third, the subcostal 

window is often used for patients who have lung disease or surgery, and provides a good view of 

the septum, four-chamber views, and vascular connections. Fourth, the suprasternal view shows 

the aorta and its branching vessels [97].  

Vascular ultrasound uses ultrasound to measure the structure and function of arteries and veins. 

B-mode ultrasound can image the vessel wall of large vessels. Doppler ultrasound helps identify 

vessels by their characteristic velocity waveforms, and knowing the normal velocity waveform 
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pattern helps detect potential disease when the waveforms look abnormal [91]. For example, in 

vasculitis, B-mode ultrasound is useful for measuring the thickness of the vessel wall. The vessel 

wall typically has three layers, the intima, the media, and the adventitia; in vasculitis, intima-

medial thickening is considered a cardiovascular risk factor. So, the ultrasound is able to quickly 

and non-invasively measure the thickness to assess cardiovascular risk in cases of vasculitis 

[98]. Another example is any location in the cardiovascular system that has vessel stenosis or 

occlusion. Spectral Doppler, for example, has been found to be useful for assessing and 

identifying the stenosis. At the prestenotic region, a key feature is high pulsatility of the velocity 

waveform. Pulsatility is essentially the amplitude of the velocity waveform. At the location of the 

stenosis, there is typically high velocity and low pressure in a narrow lumen based on Bernoulli’s 

equation, which explains the conversion of potential energy to kinetic energy by conservation of 

energy [91]. After the stenosis, there is low flow or undetectable flow. All of these features can be 

detected with spectral Doppler. Another application of vascular ultrasound is assessing 

arteriovenous fistula (AVF) surgery maturation for hemodialysis patients. In this case, ultrasound 

in its various modes, B-mode or Doppler, can be used to measure flow rate, diameter, and depth 

of the new AVF to ensure that it has matured well enough to be a dialysis access site. Vascular 

ultrasound is also useful for aortic disease patients. One example is aortic dissection repair 

surgery, which can sometimes cause small leaks. In this case, contrast can be injected in 

conjunction with vascular ultrasound to increase sensitivity for detecting small leaks. After organ 

transplants, vascular ultrasound can be used to make sure that blood supply and drainage is 

adequate to the newly placed organ [98]. Vascular ultrasound can also be used to image venous 

vessels. One common form of venous disease is venous thromboembolism, in which patients 

with deep vein thrombosis can be at high risk of developing pulmonary embolism. Pregnant 

women are also at risk of deep vein thrombosis. A thrombus that has formed either in the arm or 

the leg can break off, or embolize, and clog the arteries leading to the lungs which can be fatal. A 

common diagnostic procedure is for the sonographer to apply pressure to the femoral vein using 



www.manaraa.com

44 

 

the probe in B-mode ultrasound and measuring the diameter of the vessel to assess its 

compressibility [99]. In coronary artery disease, intravascular ultrasound has been found to be 

useful for evaluating atheroscelerotic plaque development [100-102]. 

3.1.6 Basic ultrasound in obstetrics 

The standard obstetrical ultrasound exam, according to clinical guidelines (ACR-ACOG-AIUM-

SRU Practice Parameter for the Performance of Obstetrical Ultrasound), is divided into the first 

trimester examination and a second/third trimester examination [103].  

In the first trimester, the sonographer looks for the presence of a gestational sac. It is a collection 

of amniotic fluid and should contain a yolk sac and embryo. This confirms the presence of an 

intrauterine pregnancy. If the embryo is present, the crown-rump length is measured using 

ultrasound calipers and is used to estimate the gestational age. The cardiac motion is evaluated 

using M-mode ultrasound or a 2D video clip, rather than using Doppler ultrasound, to minimize 

ultrasound exposure to the growing embryo. The number of fetuses is counted; if there are twins, 

amnionicity and chorionicity are determined. The fetal anatomy, if visible, is evaluated for 

presence of the bladder, the umbilical cord insertion, and the extremities. To test for possible 

aneuploidy in the fetus, nuchal translucency thickness is measured. Sometimes Doppler 

ultrasound may be used to measure ductus venosus velocity [104]. The presence of reversal of 

the A wave suggests possible cardiac compromise associated with aneuploidy. The sonographer 

also looks for uterine and ovarian lesions such as fibroids, and uterine anomalies that may impact 

the success of the pregnancy. To ensure fetal safety, sonographers are advised to monitor the 

thermal index of the ultrasound machine, which shows how much thermal energy is absorbed by 

the tissues. Since bone tends to absorb more thermal energy than soft tissue, soft tissue thermal 

index is used up to 10 weeks gestation and switched to bone thermal index after 10 weeks 

gestation when bone has started growing in the fetus [103, 104].  
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In the second and third trimester standard ultrasound exam, the amniotic fluid volume is 

measured for possible presence of oligohydramnios (low amniotic fluid), which can lead to fetal 

anomalies, or polyhydramnios (too much amniotic fluid), which can lead to placental abruption 

and premature birth. The placenta location is evaluated for possible placenta previa. Also, the 

umbilical vessel number is counted and assessed for location of insertion both in the placenta 

and the fetus. The gestational age of the fetus is best measured by crown-rump length in the first 

trimester, but if the crown-rump length was not found to be accurate, the gestational age can also 

be estimated by using measurements of fetal anatomy. This includes the biparietal diameter, 

head circumference, femoral length, and abdominal circumference. These measurements can 

also be used to estimate the fetal weight, which is important for evaluating the possibility of fetal 

growth restriction. Hadlock et al have published models that translate the anatomical 

measurements to fetal weight [64, 105].  

In the second/third trimester, the umbilical artery pulsatility index can also be measured using 

Doppler ultrasound to assess for fetal growth restriction [104]. Like in the first trimester, the 

sonographer again examines uterine and ovarian anatomy to look for the progression of lesions, 

such as fibroids that could impact the health of the pregnancy [103]. The sonographer also 

assesses fetal anatomy, particularly the brain and the heart. In the brain, middle cerebral artery 

velocity is measured by Doppler ultrasound to assess for possible fetal anemia [104]. The 

cerebroplacental ratio is calculated by the middle cerebral artery pulsatility index divided by the 

umbilical vein pulsatility index. If the cerebroplacental ratio is too low, this is a sign of brain 

sparing from physiological distress. Cardiac function is assessed by measuring umbilical vein 

pulsatility for possible high pressure in the right ventricle in the fetus. Another sign of cardiac 

compromise is reversal of the A wave in the ductus venosus velocity waveform measured by 

Doppler ultrasound. The sonographer examines the head, face, neck, stomach, bladder, umbilical 

cord insertion, spine, extremities, and sex of the fetus during the second and third trimester [103]. 

Sometimes the uterine artery is measured with Doppler ultrasound to assess risk for 
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preeclampsia and fetal growth restriction. Uterine artery assessment will be discussed in 

Chapters 5 and 6 in more detail. In many clinics, Doppler ultrasound of uteroplacental and 

fetoplacental vessels are reserved for research but are mentioned here to demonstrate how they 

can enhance the standard obstetrical exam.  

3.2 Principles of flow and perfusion MRI 

3.2.1 Signal generation 

Magnetic resonance imaging (MRI) is the primary modality explored in this dissertation. MRI is 

advantageous over ultrasound for patient imaging in that it has high spatial and temporal 

resolution with large spatial coverage and can generate versatile contrasts to visualize different 

tissues. It is less operator-dependent than ultrasound because the patient can be consistently 

positioned on the table, in contrast to ultrasound’s variability due to the sonographer’s probe 

orientation. The MRI signal is generated by manipulating the water protons in tissues using 

magnetic and radiofrequency fields. When outside of a magnetic field water protons are oriented 

randomly, but once they are put within a magnetic field they align parallel to that magnetic field 

where half of the protons are pointing in the same direction and half are pointing in the opposite 

direction. However, slightly more protons align with the main magnetic field (B0). At the same 

time, the protons are spinning on their own axes while precessing around the magnetic field 

direction at a precession Larmor frequency w=gB, where g is the gyromagnetic ratio (42.58 

MHz/T) and B is the magnetic field strength (e.g. 1.5T). The collection of protons is called the net 

magnetization vector. By convention, the MRI coordinate system refers to the net magnetization 

vector as pointing in the positive direction of the z axis (direction of B0) at equilibrium. The B0 field 

is generated by running a current through a large spiral of wire, which generates a magnetic field 

based on Maxwell’s Law. 



www.manaraa.com

47 

 

To generate a signal, a radiofrequency (RF) pulse matching the Larmor frequency rotates the net 

magnetization vector towards the x-y plane. After the RF energy is turned off, the net 

magnetization begins to relax back to its equilibrium state in two independent but simultaneous 

processes. Longitudinal relaxation occurs when the net magnetization vector returns to positive z 

orientation. Transverse relaxation occurs when the protons begin to dephase or spread out until 

the net transverse magnetization vector eventually cancels out to zero. Imaging contrast in MRI is 

based on tissue-specific properties that describe how the protons interact in the presence of 

perturbations in the magnetic field. T1 describes how quickly the net magnetization reaches 

equilibrium parallel to B0 (longitudinal magnetization). T2 describes how quickly the net 

magnetization decays along the axis parallel to B1 (transverse magnetization). T1 and T2 are 

completely independent of one another but T1 ³ T2. The RF pulse can be designed to rotate the 

net magnetization vector at any angle away from +z. The maximum signal is obtained with a 90º 

pulse which flips the vector to the x-y plane. The magnetic flux of the excited protons induces a 

current called a free induction decay (FID) into a receive coil based on Faraday's law. The signal 

has real and imaginary components and is amplified, digitized, and processed.  

3.2.2 Spatial encoding and image formation 

Spatial encoding is required to distinguish between the different tissue regions of the patient. This 

is enabled by gradient coils which form magnetic field gradients in the scanner. In order to select 

a slice and control its thickness a gradient magnetic field is applied in the z direction during the 

excitation RF pulse. The gradient amplitude and duration as well as RF properties such as 

bandwidth, can be used to adjust the slice thickness and position. In the x-y plane, the x gradient 

and y gradient cause the protons in the patient to have varying frequencies and phase. The signal 

of each location is denoted by the equation ! "#, "% = ' (, ) *+,- ./#0.1% 2(2)  , where !   is the 

signal and !  	is the object. Since the signal from each location is denoted by a particular 
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frequency and phase offset, the coordinates of the grid are marked by spatial frequency as 

1/distance. This coordinate system is called k-space. To reconstruct the image back into object 

space, there are various ways to sample k-space with a Cartesian grid being one of the most 

common. The spatial resolution is determined by the extent of the grid denoted by !"#$"  	and	!"#$%  . 

The field of view is determined by the interval between the samples denoted by ∆"#  	and ∆"#  . The 

MRI scanner is often known as a Fourier transform mechanism by encoding the signal in k-space. 

Therefore, reconstructing the image of the object from k-space requires the inverse Fourier 

transform. An important consideration when sampling in k-space is the satisfying the Nyquist 

sampling criterion. The readout gradient has a particular sampling frequency that must be at least 

two times the maximum spatial frequency in order to avoid aliasing artifacts. 

3.2.3 Flow and perfusion MRI  

The three cardiovascular MRI techniques discussed in this dissertation are arterial spin labeling 

(Chapter 4), 2D phase contrast/4D flow (Chapters 5 and 6), and time-of-flight angiography 

(Chapter 7). 

3.2.3.1 Arterial spin labeling (ASL) MRI  

Perfusion is the rate of blood flow into a tissue. In MRI intravenous gadolinium contrast is often 

used as an exogenous tracer to estimate blood flow into organs such as the brain. However, 

there are potential risks to administering gadolinium in pregnancy. Arterial spin labeling (ASL) 

MRI has been a technique of interest for imaging perfusion in pregnancy because it does not 

require exogenous contrast. Instead, blood water is used as an endogenous tracer by applying 

RF pulses to invert the net magnetization of blood before it travels through the arteries to the 

organ. Since the magnetization relaxes after the RF pulse, the perfusion-related signal decays 
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according to the T1 of blood, which is about 1-2 seconds. The amount of signal also depends on 

the volume of blood that is labeled using the RF pulses.  

The basic framework of ASL involves the acquisition of two types of images. The label image is 

created when blood is inverted and after a duration of time (post-label delay) while blood enters 

the tissue, a readout module collects an image of the perfused organ. The control image is 

created without any RF inversion but the same readout module collects an image of the organ. 

The perfusion-weighted image is generated by subtraction of the label and control images. 

Theoretically, the difference between the two images is the labeled blood which reflects 

perfusion. However, in general the control-label difference is about 1% of the control image signal 

so a series of alternating label and control images are acquired and averaged to enhance the 

signal-to-noise ratio. 

There are several types of labeling in ASL, but the one used in this dissertation is called pulsed 

arterial spin labeling (PASL). The key feature of PASL is that a single RF inversion pulse is 

applied to a large region of blood when acquiring the label image. Flow-sensitive Alternating 

Inversion Recovery (FAIR) ASL is a specific type of PASL in which a non-selective inversion 

pulse inverts all of the signal in the entire region covered by the RF coil to generate the control 

image, while the inversion pulse is only applied to the imaging slab to generate label image [106]. 

The disadvantage of FAIR is that different spins have different transit times reducing the precision 

of perfusion measurement. It is also difficult to localize where the blood is coming from. However, 

FAIR ASL is relatively easy to implement compared to other labeling techniques. In the placenta 

specifically, the non-selective inversion of FAIR ASL is able to tag both the ovarian arterial supply 

and the uterine arterial supply (Fig. 13).  
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ovarian	arteries

uterine	arteries

 

Figure 13 This diagram shows how FAIR ASL can be applied to the placenta. The green 
box shows the imaging slab and the entire blue translucent overlay shows the extent of 
the non-selective inversion pulse. The placenta has a dual arterial blood supply, ovarian 
and uterine arteries, which are covered by the non-selective inversion pulse.  

The actual perfusion quantification (mL/min/100 g of tissue) uses a mathematically-derived model 

such as discussed in Buxton, et. al. [107]. The equation takes into account post-label delay, T1, 

tissue blood-water partition coefficient, and other effects. A common challenge in ASL MRI is 

unwanted signal from stationary tissue causing errors in perfusion estimation. To address this 

issue, background suppression is applied before labelling to reduce signal from stationary tissue. 

Background suppression uses inversion pulses at specific times for the purpose of inverting and 

allowing stationary tissue to become nulled or appearing as zero so as to not contribute to the 

perfusion-weighted image.  
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3.2.3.2 2D phase contrast (PC) and 4D flow MRI 

Phase contrast (PC) MRI measures signal phase to distinguish static from moving spins. The 

main feature of the PC MRI pulse sequence is the addition of bipolar velocity-encoding gradients 

positioned along the direction of the blood vessel. Mathematically, the phase produced by a 

gradient is defined as ! " = $ % &'
( ) & *&,   where ! = 42.58	)*+/-   is the gyromagnetic ratio 

(constant), !   = duration of gradient, !(#)   = gradient amplitude, and !(#)   = position of the spin 

[108]. This equation can be rewritten using the Taylor expansion to get 

!(#) = & '(() )* + ,*( + -
. /*(

. + ⋯ 1(2
*   = ! "#(%)'# + ")(%)*# + )

+"+ % ,# + ⋯   . By 

representing !(#)   in terms of initial position !"  , velocity !"  , acceleration !"  , etc., !"   becomes the 

nth gradient moment with respect to these nth order terms [108]. 

a b

 

Figure 14 Modeling of a) bipolar gradients with only m0 nulling but m1 phase 
accumulation, b) velocity compensation gradients with both m0 and m1 nulling 

Figure 14a (top) is a demonstration of the bipolar gradients. From !   = 0 to 1.4 ms is a pair of 

identical gradients with opposite polarity. When the spins are not moving, !", $",   and other higher 
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order terms are 0. Figure 14a (bottom) shows that the zeroth moment !"   increases and 

decreases linearly as the bipolar gradients are played. This is because the !"   is the area of the 

gradient and the bipolar gradient areas cancel each other. This demonstrates that regardless of 

whether the spins are stationary or moving, they experience a linear phase accumulation until !   = 

0.65 ms and complete reverse their phase from !   = 0.65 to 1.4 ms because ! " = 	%&' " ('   and 

!" # = 0   at the end of the bipolar gradients. 

However, the bipolar gradients are not able to recover their first moment !"  , which is the area of 

the gradient multiplied by the time duration that the gradient is turned on, i.e. !" = !$  *	"  . 

Assuming that the spins are moving at a constant velocity so that !"   and other higher order terms 

are 0, from Eq. 2 we see that !(#) = 	'()(#)*+  , where this time !" # ≠ 0  . If the spins are 

moving, the bipolar gradients are unable to refocus the spins back into phase, resulting in a 

residual phase accumulation at the time of the echo. Physically, this can be explained by the 

moving spins experiencing a progressively higher gradient field strength as they travel through 

the pipe. This prevents the second gradient from fully recovering the dephasing from the first 

gradient [108]. PC MRI is not only able to detect moving spins apart from static spins based on 

the presence of phase accumulation at the end of the bipolar gradients, it is able to use the phase 

measurement itself to solve for velocity which will be discussed later. 

Phase accumulation leads to signal loss in the magnitude image because intravoxel spin 

dephasing reduces transverse magnetization faster than surrounding static spins. In the phase 

image, the velocity-dependent phase accumulation leads to misregistration artifacts in the phase 

encoding direction of the image. If phase accumulation due to flow is undesired, as is the case 
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when displaying vascular anatomy in angiograms, velocity compensation is necessary [108]. This 

requires modifying the bipolar gradients to ensure that !" # = !% # = 0  . A tri-lobed gradient is 

typically implemented with some amplitude G from !   =0 to 0.8 s, -2G from t=0.8 s to t=1.7 s and G 

from t=1.7 s to 2.3 s (Fig. 14b). This ensures that there is zero phase accumulation in the moving 

spins as well as the static spins.  

In 2D PC MRI, a pair of bipolar gradients is played along with velocity compensation gradients in 

the slice select gradient direction (z). While the bipolar flow encoding gradients cause the signal 

of the moving spins to accumulate phase, so do the other gradients involved in the sequence 

including the slice select (z direction), phase encoding (y direction), and readout (x direction) 

gradients. For this reason, the velocity compensation gradients are necessary to null the phase 

effects of the other non-flow encoding gradients. 

There are additional factors that give rise to signal phase errors, such as those from eddy 

currents and magnetic field inhomogeneities [108]. By acquiring two consecutive scans while 

toggling the bipolar gradients, i.e. positive followed by negative gradient in the first scan and 

negative followed by positive gradient in the second scan, the phase images can be subtracted to 

eliminate these phase errors which are relatively constant compared to phase changes from 

moving spins. The phase difference is ∆" = $∆%&',   where ∆"# = 2"#   which is determined from 

the bipolar gradient design. The factor of 2 shows that subtracting phase images of opposite 

polarity also increases the dynamic range of the phases which eases the separation of velocities. 

A major consideration in deriving velocity from phase measurements is the avoidance of aliasing. 

This arises from the limited range in which phase can be measured, i.e. from –π to π. In the 

event that the velocity of a particular region in the image exceeds the value corresponding to φ = 

π, then the phase will wrap to the negative range. To mitigate this problem, one can tune the 
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definition of φ = π appropriately for the expected range of velocities to be measured in the image. 

This parameter is known as the VENC (velocity encoding) and is often measured in cm/sec. 

Since !"#$ = 	 '
(∆*+

= '
(,-.   [109], this adjusts the strength of the gradient (G) and duration of the 

gradient (τ). In practice, if one is trying to minimize scan time, the G is maximized before 

lengthening τ. Although it is often desirable to set the VENC high to ensure the ability to capture a 

wide range of velocities, increasing the VENC simultaneously decreases the phase signal-to-

noise ratio (SNR). SNR of the phase is simply the SNR of the magnitude image weighted by the 

phase φ.  

Flow measured in volume/time (usually mL/min) is calculated as ! = 60%&,   where A = cross 

sectional area (cm2), v = velocity (usually cm/s), and 60 converts seconds to minutes. This means 

the measurement of velocity by PC MRI combined with the knowledge of the vessel geometry 

allows the computation of volumetric flow rate. Since the bipolar gradients are implemented on 

the slice selection axis in the direction of flow, the slice being imaged is a circular cross-sectional 

plane through the vessel. Ideally, the plane should be oriented perpendicular to the direction of 

flow but if not, the velocity is !"#$(&)  , where !   is the orientation of the slice. The thickness of the 

slice also determines the sensitivity of the velocity approximation to the orientation of the slice.  

The inverse Fourier transform of the k-space data collected are complex numbers, so to extract 

the phase term, one computes the arctangent of the ratio between the imaginary and the real part 

of each voxel ! ", $   : ! ", $ = arctan +, + -,.
/0 + -,. .    Phase difference reconstruction is often 

described as computing ∆"   by subtracting two phase images, but rather than taking the 

difference of two arctangents, it is more computationally efficient to do this by taking the complex 
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ratio so the arctangent only needs to be computed once: ∆" = $%
$&
= '(')* = arctan $0 $%$&*

12 $%$&*
.   Once 

the phase difference image ∆"   has been computed, one can extract velocity using the equation 

! = ∆$
% &'() ∶ -&'() < ! < &'()   and the sign of the phase difference reflects the direction of 

blood flow. Similar to the concept of the wheels of the car appearing to move backwards in a 

motion picture, the flow appears to be moving in the wrong direction when 

1 < #
$%&' < 2, 3 < #

$%&' < 4,…   . This is called aliasing, which can be avoided by setting a high 

VENC or retrospective correction.  

Unlike 2D PC MRI, which has one pair of bipolar gradients in the slice-select direction, 4D flow 

MRI has bipolar gradients in all three gradient directions. There are several ways to encode flow 

in all three directions. If one were to derive phase contrast imaging as described thus far and 

extrapolate to encode velocity in three dimensions, six scans would be expected in order to 

perform three phase image subtractions. This is called the “six-point” method. However, one can 

obtain a three-component velocity vector with only four scans: reference, bipolar in x and y, 

bipolar in x and z, and bipolar in y and z [110]. This is more commonly used to save scan time. 

While it can be a challenge to parse the complex data from 4D PC MRI, having 3D spatial 

information, 3D velocity information, and time can be powerful tools for understanding 

cardiovascular structure and function. The most common approach is to display the three 

dimensions of flow as velocity vectors with the color or length representing the magnitude. One 

can also display flow in 3D by tracking each vector as a particle in the form of streamlines. These 

streamlines have been used to demonstrate qualitative flow patterns such as whether the flow is 

linear or tortuous. 
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3.2.3.3 Flow enhancement in time-of-flight (TOF) angiography  

To explain TOF MRI blood vessels are treated as a continuous flow of spins at constant velocity 

through a cylindrical pipe. Assume that a 90-degree pulse is applied followed by a 180-degree 

pulse that rephases the spins in the transverse plane. If the spins are not moving, they will be 

able to experience both the 90-degree pulse and the 180-degree pulse so the signal remains 

high. On the other hand, if the spins are actively flowing through the pipe, they experience the 90-

degree pulse but subsequently flow out of the plane of the slab such that they do not experience 

the 180-degree rephasing pulse. This results in signal loss in the 2D image and appears as a 

dark spot in the vessel called a flow void. Note that this is a misnomer because it implies the 

absence of flow when in fact it is the presence of flow itself that causes loss of signal [109]. 

To correct for the flow voids, one can apply a pulse sequence with a train of repeated RF pulses 

within the slice. The time between each RF pulse is the repetition time (TR). This process 

repeatedly flips the static spins into the transverse plane before they get a chance to fully recover 

their longitudinal magnetization signal. In contrast, moving spins upstream have not experienced 

as many RF pulses, if any, by the time they flow into the slab. Therefore, their signal is higher 

than that of the surrounding static tissue. If the spins are flowing fast with v*TR > h, where v is the 

velocity of the spins and h is the thickness of the slab, then a volume of blood from upstream to 

the slab will completely replace the slice being imaged, maximizing the intensity because these 

spins have not experienced any RF pulses. However, if the spins move slowly such that v*TR < 

h, then the upstream blood only partially fills the imaged slice, producing some enhancement but 

not as high as the fast moving blood. The amount of signal measured also depends on the flip 

angle of the RF pulse. A 90-degree pulse would immediately saturate all the spins in the first 

application, but smaller flip angles take more repeats to steady state saturation, making them 

more sensitive to the varied velocity of moving spins. This phenomenon is known as inflow 

enhancement used in TOF MRI of blood vessels [109]. 
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3.2.4 Flow and perfusion MRI in general cardiovascular medicine 

ASL MRI has been primarily used to study the brain for clinical medicine and research [111]. It 

has been used to assess acute stroke [112], tumor vascularization [113], and dementia [114]. 

These conditions have been found to be closely related to perfusion, also known as cerebral 

blood flow (CBF). ASL has also been used to research human behavior, learning [115], and mood 

[116], as CBF plays an important role in neural activity. By understanding normal CBF patterns, 

ASL has also been used to study drug effects on the brain by monitoring comparative CBF 

changes. 2D PC MRI is a common technique to measure blood flow in any major vessel [117]. 

Velocimetry of the aorta, superior/inferior vena cava, pulmonary arteries, and other important 

vessels is useful for measuring function of the cardiovascular system. 2D PC MRI can identify 

stenosis, characterized by a narrow lumen with abnormally high velocity, or dissection, showing 

flow in a vessel adjacent to an extra cavity. 4D flow MRI is still mostly used in research settings, 

evaluating complex flow patterns in disease and post-surgical cases. One example is measuring 

wall shear stress to monitor progression of atherosclerosis [22]. TOF MRI is used routinely in the 

clinic to visualize vessel structure of arteries and/or veins for direct assessment or as a scout 

image for other MRI sequences.  

3.2.5 Flow and perfusion MRI in obstetrics 

Unlike routine ultrasound screening of pregnancies, MRI is generally reserved for advanced 

evaluation of high-risk cases in the event of suspected pregnancy complications. The soft tissue 

contrast, large field of view, and multiplanar capabilities make MRI suitable for assessing 

placental abnormalities (placental abruption, placental adhesive disorders, etc.), fetal 

abnormalities, and even maternal conditions unrelated to pregnancy such as tumors [118]. While 

the MRI protocols vary depending on the conditions being evaluated, localizers, T1/T2-weighted 

images, and fat-suppressed images are commonly used to visualize anatomy. Advanced MRI 
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techniques such flow and perfusion used in clinical obstetrics are beyond the scope of this 

dissertation, but some preceding uteroplacental flow and perfusion research is briefly discussed.  

One of the earliest ASL studies on the human placenta was conducted at 0.5T using FAIR ASL 

which measured an average perfusion rate of 176+/-24 mL/100 mg/min. A later study of FAIR 

ASL on second trimester pregnancies with small for gestational age (SGA) or appropriate 

gestational age (AGA) outcomes show that SGA subjects had lower perfusion than AGA subjects 

[119]. ASL MRI has also been used to study placental perfusion in mice [120, 121] and non-

human primates [122]. More recently, innovations in labelling of ASL sequences have been 

applied to the placenta as well using 3T, such as velocity selective ASL in the PERFOX technique 

[123] and pseudocontinuous ASL [24].      

2D PC MRI has been used to measure uterine artery blood flow in human pregnancy at 1.5T [21] 

and 3T [124]. It can also be used to measure blood flow in umbilical and fetal vessels. Even 

though 2D PC MRI is a widely available technique, it is challenging to orient the imaging plane 

directly perpendicular to the vessel for accurate measurement of velocity within the complex 

vascular network of the female pelvis. 4D flow MRI has the advantage of allowing retrospective 

velocity measurement despite a long acquisition time. Recently, it has been used to study 

uteroplacental vessels in non-human primates [125].   

A major concern of MRI in pregnancy is safety. In the general population, the main potential 

safety hazards of MRI are  

1. The main magnetic field can attract metal objects, which can turn into projectiles and 

place the patient and other personnel at risk. 

2. The RF excitation energy can cause heating of tissue. 

3. Rapid switching of gradients can cause central and peripheral nerve stimulation. 
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4. The acoustic noise of the MRI can carry the risk of hearing loss.  

Therefore, there has been significant research effort investigating the extent to which pregnant 

women and developing fetuses may be more vulnerable to these hazards than the typical patient 

previously considered. The main magnetic field was initially thought to be teratogenic or cause 

fetal harm but a retrospective study did not find strong evidence of increased adverse fetal health 

outcomes in those who were exposed to MRI in utero [126]. The RF energy used to excite MRI 

signals does carry a risk of heating maternal and fetal tissue. The distribution of heat in the body 

varies according to fetal position, maternal position, and body size and shape. To be 

conservative, most MRI protocols use a 2 W/kg specific absorption rate (SAR) limit or a 

temperature increase of 0.5ºC over a duration of 30 minutes [127]. The rapid switching of 

gradients potentially increasing the risk of central and peripheral nerve stimulation is taken into 

consideration when scanning any patient, but pregnancy has not been known to carry additional 

stimulation risk beyond a general subject. The MRI scanner generates loud noises which can 

cause hearing loss in the mother or fetus. The mother is required to wear ear protection. Fetal 

hearing is protected by surrounding maternal tissue which can attenuate sound. Typically 

scanning does not exceed the 90 dB limit set by American Academy of Pediatrics [126]. Like 

ultrasound, MRI does not generate ionizing radiation and can be a powerful diagnostic tool when 

the benefits outweigh the risks to the pregnant patient.   
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CHAPTER 4: SPIRAL ARTERY FUNCTION BY ARTERIAL SPIN 

LABELING (ASL) MRI 

4.1 Abstract 

Placental insufficiency has long been known to play a role in the development of HPD but the 

exact physiological nature of spiral artery dysfunction is an area of active research. In this study, 

Flow-sensitive Alternating Inversion Recovery (FAIR) ASL MRI was adopted and tested on 

human pregnancy subjects in the second and third trimester to optimize the technique and 

explore signal processing strategies that would benefit clinical understanding of HPD. 19 subjects 

in the second and third trimester were imaged with FAIR ASL MRI at 1.5 T and measured 

placental perfusion was 36.6, 76.4, and 118.9 mL/100g/min using manual, suprathreshold, and 

Bonferroni-corrected ROIs. An alternative pattern analysis approach was tested on a subset of six 

subjects. This showed that by taking a Bayesian approach with an alternate coordinate 

transformation and thresholding of the blood flow clusters, gestational hypertensive subjects 

seemed to have larger variation in total area and percent area than normotensive subjects. This 

may result from more motion or more intermittent flow in the abnormal pregnancies. The evidence 

provided by this study may serve as a foundation for future investigation in developing ASL MRI 

to evaluate the perfusion dynamics of the placenta.  

4.2 Introduction 

Placental histopathology suggest that insufficient placental perfusion may be strongly associated 

with HPD based on placental histopathology [128] because HPD often manifests as maternal 

stromal-vascular lesions such as accelerated villous maturation and intervillous fibrin deposition 

resulting from abnormal spiral artery flow in maternal vascular malperfusion. While the underlying 

etiology of this pathology is still being investigated, researchers speculate a combination of 
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genetic, environmental, and cellular processes (e.g. insufficient trophoblast invasion of the spiral 

arteries) contribute to maternal vascular malperfusion [13, 128]. In addition, data-driven 

mathematical modeling of blood flow in the spiral arteries and intervillous space have described 

damaging high-pressure, turbulent blood flow jets and high wall shear stress entering the 

intervillous space from poorly-modeled spiral arteries [53, 129]. These physiological studies 

highlight the potential of in vivo hemodynamic assessment of placental function to improve 

researchers’ understanding of disease progression in HPD. 

Measuring spiral artery flow in human pregnancy has been challenging. Recent studies have 

reported initial feasibility by Doppler ultrasound [130, 131], but they acknowledge that this is a 

localized measurement so the sensitivity is too low to predict HPD. Therefore, the primary method 

of measuring uteroplacental blood flow remains uterine artery Doppler ultrasound as a surrogate 

for spiral artery function. Arterial spin labeling (ASL) MRI is a promising technique for measuring 

placental blood flow in pregnant women because it is non-invasive, quantitative (mL/min/g tissue), 

and does not require a contrast agent. While clinical MRI does not have the spatial resolution to 

image individual spiral arteries, it has the potential to supersede ultrasound by imaging perfusion 

dynamics and other functional aspects as such diffusion and oxygenation of the whole placenta. 

Prior ASL MRI research in humans have used Flow-sensitive Alternating Inversion Recovery 

(FAIR) without background suppression at 0.5T [23], at 1.5T [119], pseudocontinuous labeling 

(pCASL) at 3T [24], or acquired simultaneously with oximetry [123]. 
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Figure 15 Diagram of placental anatomy showing blood sources and destinations around 
the intervillous space, an open pool of blood [11]. 

However, there are significant challenges to placental ASL, including: 1) vulnerability to motion 

artifacts and 2) lack of an appropriate perfusion model specific to the placenta. Motion can come 

from maternal breathing, fetal motion, and uterine contractions. In addition, prior studies rely on 

mathematical models of perfusion that were originally developed for organs with arterial-capillary-

venous circulations such as the brain and kidney. In contrast, the placenta is unique anatomically 

and physiologically in that it consists of arterial blood flowing into an open space called the 

intervillous space that can be as large as 3 cm in diameter. The blood bathes the fetal capillaries 

before returning through the venous system (Fig. 15). This has led to innovations accommodating 

this unique physiology. For example, it is believed that measuring blood movement in a variety of 

directions, rather than in a single direction as in a capillary bed, is a critical part of the placental 
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blood flow pattern [132]. These challenges were also addressed in the following ASL MRI 

feasibility and pattern analysis studies I conducted. 

First, feasibility of FAIR ASL at 1.5T was tested in pregnant human subjects, using background 

suppression to reduce physiological noise. The advantage of FAIR ASL is that it is relatively easy 

to acquire images from complex anatomy such as the placenta and surrounding vessels. 1.5T 

MRI systems are more widely available and more commonly approved for imaging pregnant 

women than 3T MRI, despite having considerably lower sensitivity for detecting ASL effects. This 

study was presented as an abstract at ISMRM 2018 [133]. 

Second, an image processing approach of placental ASL images was developed to characterize 

placental blood flow distribution without assuming the traditional perfusion model. Instead, the 

control and label signals were considered as separate normal distributions with the same 

standard deviation as a measure of temporal signal dynamics during the time of image 

acquisition. An alternate coordinate space was developed with meaningful spatial descriptors that 

would improve characterization of blood flow distribution from the maternal to fetal side of the 

placenta. This study was presented as an abstract at ISMRM 2019 [134].  

4.3 Methods 

4.3.1 Feasibility of 1.5T FAIR ASL MRI in human pregnancy to measure 

placental perfusion 

19 healthy singleton pregnancies (GA range=17-38 weeks) were imaged to characterize normal 

placental perfusion at 1.5T. HASTE localizer images were acquired in four axial slice positions 

through the placenta, followed by free-breathing FAIR ASL in the same region with a 2D EPI 

readout (4 slices, 12.5 mm gap, GRAPPA rate=2, matrix=64x64, target voxel size=4x4x10 mm3). 

A background suppression (BS) scheme was optimized to suppress the static tissue signal with 
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T1s between 650 and 4000 ms to 10% of its equilibrium value. An M0 scan with no magnetization 

preparation and identical imaging parameters was also acquired for quantification. BS FAIR ASL 

was acquired with several inversion times and test-retest reliability was also assessed in a subset 

of 8 subjects. 

Data analysis included motion correction of the ASL images using a nonlinear deformation [135] 

and compared signal changes in three types of ROI: 

1. manual tracing of the placenta based on the M0 image 

2. statistical parametric mapping based on temporal correlation with the label/control 

paradigm thresholded at p<0.05 (uncorrected) 

3. statistical parametric mapping based on temporal correlation with the label/control 

paradigm thresholded at p<0.05 (Bonferroni corrected for the number of placental voxels) 

Placental blood flow was estimated using the traditional Buxton, et al. equation 

! = #$$$∗∆'∗()*/,../,
0∗'$∗12    [107] with adjustment of M0 for 90% background suppression and using 1.53s 

for blood T1 at 1.5T in women [136]. 

4.3.2 Pattern analysis of placental blood flow distribution in ASL MRI of 

human pregnancy  

A method of quantifying uteroplacental blood flow distribution using 2D FAIR ASL MRI was 

developed and tested in 6 of the 19 singleton pregnant subjects with clinical outcomes listed in 

Table 1. Rather than define a perfusion model as in traditional approaches of analyzing ASL 

images, it was assumed that the label and control signals were normally distributed with the same 

standard deviation. This would enable visualization of the temporal dynamics of the acquired data 

in a model-free fashion. Then, a Bayesian approach was adopted by drawing 100 samples from 
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the posterior distribution of the control and label signal difference. The median value from each 

voxel was extracted and masked based on a statistical threshold to remove inconsistent signals. 

Figure 16 demonstrates this concept in a representative image showing motion artifacts in the 

control-label difference from maternal breathing, fetal motion, and uterine contractions (panels a-

c) with improvement in image quality in the median image (panel d) after removing motion 

artifacts.  

 

Table 1 Six pregnant subjects (subset of 19 total) whose data was analyzed using the 
model-free approach to characterize placental blood flow pattern 

 

Figure 16 Corresponding HASTE (a) and control-label difference (ΔM) images (b,c,d) at a 
representative slice position in Subject C: both absolute value |ΔM| (b) and positive ΔM (c) 
images show noise-like artifactual signal (blue arrows) outside of expected areas of 
perfusion in the placenta and major maternal arteries. The masked median extracted from 
100 samples of the posterior distribution appears to effectively remove artifacts (d). 
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The advantage of acquiring axial images of the placenta is that this orientation allows for a cross-

sectional visualization of arterial blood flow from the maternal to fetal side. To facilitate this 

analysis, an alternate coordinate system was developed by positioning a spline-based curve 

along the uteroplacental interface of the placenta and projecting bidirectional rays along this 

curve. Interpolation was performed along these rays to form a projected image of the ΔM signal in 

both the individual 100 samples per slice and the corresponding masked median drawn from 

those samples (Fig. 17b,d). 

Since the blood flow signal was distributed in the form of clusters, reminiscent of placental 

lobules, watershed segmentation was performed and computed various metrics on the clusters to 

quantify their lobule-like pattern (Fig. 17c). A probability map was generated from the 100 

samples that depicted uncertainty based on temporal signal stability within each voxel (Fig. 17e) 

and the distribution of the cluster metrics was reported (Table 2). In the cohort of six subjects, the 

cluster metrics on a per subject basis were generated and compared. 

a

 

Figure 17 a) Diagram of control points and spline interpolation on a median image with 
corresponding HASTE image of placenta, b) projection image from masked median image, 
c) binary watershed threshold segmentation of (b), d) one of the 100 samples of the 
posterior distribution, e) probability cluster map from 100 samples 
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Table 2 Cluster metrics computed from the binary projection images (VU=voxel units, 
AU=arbitrary units) 

4.4 Results 

4.4.1 Feasibility of 1.5T FAIR ASL MRI in human pregnancy to measure 

placental perfusion 

Using data from the p<0.05 corrected voxels, ASL signal changes starting at TI=1000 increased 

with TI in a manner consistent with the increasing signal regime [107] based on an estimated 

arterial transit time of 700 msec [24] (Fig. 18a). Compared to the other ROIs, the Bonferroni-

corrected ROI produced a larger signal (Fig. 18b). When comparing the agreement between two 

repetitions of the 2000 ms inferior labeling using a more generous P<0.05 uncorrected mask, a 

considerable but not perfect overlap was found (Fig. 19).  Average overlap was 54% and 50% for 

the p<0.05 corrected and uncorrected maps after excluding two subjects with very poor 

reproducibility. Estimated placental perfusion results using the three ROI are presented in Table 

3.  



www.manaraa.com

68 

 

 

Figure 18 a) Normalized ΔM% versus TI for inferior labeling with the ROI generated from 
the Bonferroni-corrected threshold set at p<0.05. The predicted signal was based on 
transit delay Δt=700 ms. It shows that the signal behavior across TIs matches the theory 
presented in Buxton et al. [107]; b) Comparison of the normalized ΔM% versus TI curves 
from the hand-drawn ROI, suprathreshold ROI, and the Bonferroni-corrected ROI. It shows 
that the Bonferroni-corrected ROI produces the largest signal. 

 

Figure 19 M0 images of posterior placenta (top row) and anterior placenta (bottom row) 
with ASL ROIs generated using statistical parametric mapping of the ASL time series with 
the label/control paradigm thresholded at Bonferroni corrected p<0.05 (right) and p<0.05 
uncorrected (left).  Test-retest maps are shown in red and blue, while overlapping voxels 
are shown in green. 

TI = 2000 ms PBF (mL/100g/min) 

Manual ROI 36.62 ± 18.47 

Suprathreshold ROI 76.41 ± 25.32 



www.manaraa.com

69 

 

Bonferroni-corrected ROI 118.93 ± 34.71 

Table 3 Comparison of PBF (mL/100 g/min) in three types of ROIs TI=2000ms excluding 
two subjects with poor reproducibility in perfusion signal based on test-retest analysis 

4.4.2 Pattern analysis of placental blood flow distribution in ASL MRI of 

human pregnancy  

In Fig. 20 shows box plots of selected cluster metrics (Total Area, % Area, and Mean). When 

comparing individuals with no gestational hypertension and those with gestational hypertension, it 

appears that the latter group demonstrates larger within-subject variability of Total Area and % 

Area in the 100 samples of the posterior distribution compared to the former group (Fig. 20a,b). 

The Mean signal of the gestational hypertensive subjects appears to be about the same or 

slightly lower than the non-hypertensive subjects (Fig. 20c). 

A B C D E F A B C D E F A B C D E F

a b c

 

Figure 20 Per subject box plots of 2.5%,50%,97.5% quantiles for select cluster metrics. For 
Total Area (a) and % Area (b), subjects with gestational hypertension (red) have similar 
median and larger posterior variances compared to subjects without gestational 
hypertension (green). For Mean (c), subjects with gestational hypertension appear to have 
about the same median as or lower than the non-hypertensive subjects. 
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4.5 Discussion 

In these studies, background suppressed 1.5T FAIR ASL was found to be feasible in second and 

third trimester pregnancies and suitable for pattern analysis to better understand blood flow 

distribution in the placenta. The control-label difference signal changes yielded a TI dependence 

consistent with ASL theory and provided reproducible maps of placental blood flow. As expected, 

placental perfusion was highest in the ROI comprised of the voxels with the most significant 

label/control effect. Note that placental “perfusion” is not homogeneous, but rather signal changes 

are localized to discrete regions likely representing the distributions of individual spiral arteries, 

which deliver blood to chorionic villi. Some of these spiral artery distributions are found to be 

infarcted in patients with fetal growth retardation [75], and placental ASL provides a potential 

approach for detecting this pathology in vivo. Placental blood flow values were in the range of 

previously published values [23, 24], though when averaged across the anatomically defined ROI, 

values were considerably lower.  

An alternative approach of measuring blood flow distribution in the placenta rather than traditional 

perfusion was shown to be feasible in this ASL dataset. This approach did not assume a 

perfusion model in characterizing the open circulation of the intervillous space, thus allowing the 

opportunity for understanding the unique potential blood flow dynamics directly from the data. 

Initial results showed promise in distinguishing between normotensive and gestational 

hypertension subjects by showing the second group had a larger within-subject variability in the 

total area and percent area of blood flow clusters over scan duration. This pattern may be related 

to more motion or intermittent flow in the abnormal pregnancies. Although a larger subject 

population would be needed to confirm the clinically relevant differences seen, it is possible 

based on initial evidence that these patterns can be related to placental lobular morphology and 

function. For example, placental infarcts may manifest as reduced density of blood flow 

distribution. 
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In future work, this ASL acquisition and signal processing method can be improved upon by 

extending to 3D coverage of the placenta. Simultaneous-Multislice (SMS) and accelerated 

imaging strategies can be used to greatly increase the slice coverage. Another potential 

improvement is finer and larger range sampling of TIs, particularly shorter TIs less than 150 ms, 

to better capture temporal perfusion dynamics.  

4.6 Conclusions 

These studies demonstrated the feasibility of measuring and quantifying placental blood flow in 

healthy pregnant subjects in the second and third trimester using background suppressed FAIR 

ASL at 1.5T. Placental ASL with Bayesian statistics provides an approach for noninvasively 

mapping and evaluating maternal blood flow pattern in the placenta. Metrics quantifying 

characteristics of HPD-related placental dysfunction can potentially be clinically relevant 

biomarkers for assessing risk of adverse pregnancy outcomes.  
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CHAPTER 5: NON-INVASIVE IMAGING OF THE UTERINE 

ARTERY DURING HUMAN PREGNANCY WITH UTERINE 

ARTERY US, 4D FLOW MRI, AND TIME-OF-FLIGHT (TOF) MRI 

5.1 Conventional uterine artery assessment by Doppler ultrasound (US) 

Clinicians have largely relied on Doppler ultrasound velocimetry of the UtAs as an indirect 

measure of placental hemodynamics in suspected HPD patients based on the notion that 

pathologic high resistance to flow in the poorly remodeled spiral arteries would be reflected in the 

upstream UtAs, particularly after 24 weeks gestation. This approach is feasible because the UtAs 

are larger (3-5 mm in diameter) than the spiral arteries (~300 µm) and can be reliably localized.  

UtA velocity waveforms are commonly measured using a transabdominal probe at the lower 

uterus near the inguinal ligament. Historically UtA velocity was first measured using continuous 

wave Doppler [137, 138], but later with the availability of color pulsed wave Doppler the UtA 

became easier to locate. The key feature for finding the UtA is the crossover between the vessel 

and the external iliac artery. The sonographer rotates the probe until the characteristic spectral 

Doppler waveform is found. In nonpregnant and early first trimester subjects, the velocity 

waveform of the UtA has a sharp systolic peak and a low velocity diastolic phase, called a 

diastolic notch. By the end of the second trimester, it normally converts to a sharp systolic peak 

with a steady positive diastolic phase, indicating reduced resistance to flow [92].  

When studies began to show that adverse pregnancy outcomes seemed to be correlated with a 

persistent diastolic notch in late pregnancy, researchers began reporting metrics to identify 

abnormal UtA waveforms in pregnancy cohorts. Systolic/diastolic ratio, resistance index, and 

pulsatility index were used to circumvent the need to adjust for the insonation angle, which must 
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be considered to accurately quantify velocity. Nomograms and statistical thresholds were 

subsequently developed to categorize patients into low-risk and high-risk categories for HPD 

[139-141].  

5.2 Assessment of the uterine artery structure and hemodynamics by 4D 

flow and TOF MRI 

5.2.1 Abstract 

Given the challenges associated with uterine artery Doppler ultrasound, MRI was investigated as 

an alternative imaging technique for HPD. The purpose of this study was to determine the 

feasibility of 4D flow MRI in pregnant subjects by characterizing UtA anatomy, computing UtA 

flow, and comparing UtA velocity, pulsatility and resistivity indices (PI, RI) with transabdominal 

Doppler US. 

In a prospective cross-sectional study from June 6, 2016 to May 2, 2018, non-contrast 

angiography and 4D flow MRI of the UtA and placenta using 1.5T were performed for forty-one 

singleton pregnant subjects (age [range]=27.0±5.9 [18-41] years) in their second or third 

trimester. We additionally scanned three subjects who had pre-pregnancy diabetes or chronic 

hypertension. UtA anatomy was described based on 4D flow-derived non-contrast angiography, 

while UtA flow properties were characterized by net flow, systolic/mean/diastolic velocity, PI and 

RI through examination of 4D flow data. PI and RI are standard hemodynamic parameters 

routinely reported on Doppler US. Spearman’s rank correlation, Wilcoxon signed rank tests, and 

Bland-Altman plots were used to preliminarily investigate the relationships between flow 

parameters, gestational age, and Doppler US. 

4D flow MRI and UtA flow quantification was feasible in all subjects. There was considerable 

heterogeneity in UtA geometry in each subject between left and right UtAs and between subjects. 
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Mean 4D flow-based parameters were: mean bilateral flow rate=605.6±220.5 mL/min, 

PI=0.72±0.2, and RI=0.47±0.1. Bilateral flow did not change with gestational age. We found that 

MRI differed from US, showing lower PI (mean difference -0.1) and RI (mean difference <-0.1) 

with Wilcoxon signed rank test results of p=0.05 and p=0.13, respectively. 4D flow MRI was 

shown to be a feasible approach for describing UtA anatomy and flow in pregnant subjects. 

5.2.2 Introduction 

The placenta plays an essential role in supporting the endocrine, nutritional, and oxygenation 

needs of the growing fetus [54]. During gestation, the maternal uterine arteries (UtA) undergo 

extensive remodeling, hypertrophy and hyperplasia of vascular smooth muscle, and decreased 

arterial impedance to match fetal demand for oxygen and nutrients [46]. Arterial dysfunction is 

characteristic of pregnancy disorders (e.g. preeclampsia and fetal growth restriction) and reduced 

UtA flow is implicated in reduced birth weight and spontaneous preterm birth [142]. Quantitative 

parameters that can characterize abnormal UtA remodeling and reduced UtA flow may provide 

effective screening tools to identify women who have the greatest risk for adverse pregnancy 

outcomes. 

Transabdominal Doppler ultrasound (US) is the primary method used to assess UtA flow but is 

challenging due to the heterogeneous and tortuous UtA anatomy, location, and dependence of 

measured velocity on insonation angle [21]. Some of the limitations of US may be addressed with 

2D phase contrast MRI [20, 21], but this is also challenged by difficulty planning 2D plane 

locations, lack of three-dimensional anatomy visualization, and, in the case of unidirectional 

velocity encoding, dependence of flow direction on the plane angle. 

Time-resolved 3D phase contrast imaging (“4D flow”) is an MRI technique that maps all three 

spatial components of blood and shows 3D arterial morphology and flow dynamics. While we do 

not anticipate this method to be readily leveraged in standard clinical practice, it may be useful for 
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research as it enables assessment of blood flow in highly tortuous vessels such as the UtAs, with 

reduced operator dependence compared to US [22, 143, 144]. Compared to 2D phase contrast 

MRI, 4D flow requires longer scan times to achieve the spatial coverage and spatial resolution 

needed to image the UtA. As a result, fetal or maternal respiratory motion may corrupt 4D flow 

data. 

The purpose of this study was to assess the feasibility of obtaining 4D flow MRI data in pregnant 

subjects. A second objective was to characterize UtA structure and hemodynamics using 4D flow 

and compare these results to Doppler US.  

5.2.3 Methods 

5.2.3.1 Study Population 

This study was completed on forty-one pregnant subjects (50 originally enrolled) who gave 

informed consent between June 6, 2016 and May 2, 2018 to be enrolled in this cross-sectional 

study approved by the HIPAA-compliant Institutional Review Board. Inclusion criteria included 

singleton gestations at 16 weeks or greater. Exclusion criteria were: (1) morbid obesity (BMI ≥ 35 

at the start of the pregnancy), (2) uterine fibroids and major structural fetal anomaly, (3) routine 

MRI contraindications such as metallic implants/devices and claustrophobia, (4) insufficient MRI 

image quality, and (5) lack of US scan for comparison. The 9 subjects who underwent MRI and 

were excluded from analysis are reported in Figure 21, leaving a final count of forty-one females 

for whom data analysis was completed. Reasons for exclusion from the data analysis were: 

incorrect setting of maximum velocity encoding threshold (VENC) parameter (n=4), the attending 

physician was not available for Doppler US (n=5), or one UtA could not be located on either MRI 

or US but the other UtA remained in the dataset (n=3). Additionally, we scanned and analyzed 

three subjects with more serious risk factors of adverse pregnancy (one with pre-pregnancy 

diabetes mellitus and two with chronic hypertension). 
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50 subjects, 100 UtAs

46 subjects, 89 UtAs

41 subjects, 79 UtAs

Excluded 4 early scans because 
VENC <100 cm/s

Diameter (mm) 
measured on TOF

4 planes per UtA 
analyzed with 4D flow 
with calculations of 
velocity (cm/s), total flow 
(mL/min), PI, and RI.

MRI vs. US comparison

Excluded 3 UtAs not found on 
either US or MRI

Excluded 5 scans 
because no US

 

Figure 21 Diagram of exclusion criteria for analysis. 

5.2.3.2 Ultrasound 

Doppler US was collected and analyzed in forty-one subjects (E10 Voluson; GE Healthcare, 

Chicago, IL). US measurements of blood flow velocity in the left and right UtAs were acquired 

using a transabdominal probe. Real-time color velocimetry allowed for identification of the 

intersection between the uterine and external iliac arteries, and velocity waveforms were recorded 

according to standard guidelines [96]. Following a standard routine protocol, the angle of 

insonation between probe and UtA was kept as close to zero as possible, and in all cases <30 

degrees. Angle correction was used when a zero angle was not obtainable. MRI-compatible 

fiducials were adhered to each side of the surface of the abdomen bilaterally where the US probe 

had been located for identification of spatial correspondence on subsequent MRI. 
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5.2.3.3 Magnetic Resonance Imaging 

MRI was performed at 1.5T (Avanto; Siemens Healthcare, Erlangen, Germany) with a 12-channel 

spine array and 4-channel body array coil. 37 subjects were in supine position and 4 subjects 

were in left lateral decubitus position based on their individual comfort level. 3-lead ECG leads 

were used for cardiac-gated acquisitions. Anatomical localization of the abdomen and placenta 

was obtained with a half-Fourier acquisition stimulated echo (HASTE) sequence. 

An ECG-gated 2D multislice axial time-of-flight (TOF) angiogram was acquired, including the 

bifurcation of the descending aorta and the top of the femoral heads of the thigh bones based on 

the HASTE images to ensure coverage of the UtAs near the internal uterine orifice (Figure 22). 

The imaging parameters are listed in Table 4. Details of TOF parameter optimization are provided 

in Figure 23. 

A. MRI Image Acquisition
i. HASTE ii. TOF angiogram iii. 4D flow (3D phase contrast)

R int iliac

L int iliac

R UtA L UtA

(R arcuate artery)
(L arcuate artery)

R ext iliac L ext iliac

C. Velocity Waveform 
Analysis

PI=("#$% − "#'()/"̅
RI= "#$% −"#'( /"#$%

Q= ,
-- . ∑ "̅0,2(3)456

457

i. Bilateral flow vs. GA

(4D flow only)

ii. 4D flow vs. US comparison

"#$%
"#'(
"̅

B. 4D Flow Preprocessing and Analysis
i. Background noise masking

Manual anti-aliasing

iii. Velocity-based thresholding

Plane prescription iv. Vessel contour segmentation

ii. Manual segmentation

(optional, used only for 6 subjects in Fig. 4) v. Velocity profile

 

Figure 22 Methodology workflow. A, MRI Image Acquisition. The TOF scan (A.ii) was 
planned from a HASTE localizer (A.i). The 4D flow scan (A.iii) was positioned at the UtA 
hairpin using the TOF scan as a reference. The overall scan time was 30-40 minutes. B, 4D 
Flow Preprocessing and Analysis. The 4D flow analysis included phase difference image 
noise filtering and, if needed, manual anti-aliasing (B.i). For improved visualization in the 
subjects in Fig. 25, optional manual segmentation of UtA from 4D flow-generated 
angiograms (B.ii) was used in addition to velocity-based thresholding. Velocity-based 
thresholding was performed to create volumetric isosurfaces, from which four 
measurement planes were distributed along the UtA and oriented perpendicular to the 
blood flow (B.iii). The vessel was segmented (B.iv) and velocity profiles (B.v) were 
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extracted from each plane at each phase. C, Velocity Waveform Analysis. Flow (Q), 
systolic velocity (vmax), diastolic velocity (vmin), mean velocity (!  ), pulsatility (PI), and 
resistivity indices (RI) were estimated. We compared MRI and US in the corresponding 
UtAs of each subject. 

 
Time-of-Flight 4D flow 

Flip angle 50 degrees 8 degrees 

TR/TE 394/4.4 ms 5.5/2.67-3.13 ms 

FOV 350 x 208-330 x 140-280 mm3 192-320 x 176-320 x 
16-174 mm3 

Voxel size 1.1 x 1.1 x 2.8 mm3 1.17-2 x1.17-2 x1-2 
mm3 

BW/pixel 200 Hz/pixel 445-455 Hz/pixel 

Segments/shot N/A 2 

Temporal resolution N/A 42.4-46.4 ms 

# Cardiac phases N/A 10-18 

Acceleration factor N/A 4.7 

VENC N/A 50-200 cm/s 

Acquisition time 7-12 min. 12-20 min. 

Abbreviations: FOV=field-of-view; BW/pixel=bandwidth per pixel; VENC=velocity encoding; 

TOF=time-of-flight 

Table 4 Summary of uterine artery TOF and 4D flow MRI parameters. 
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Figure 23 Comparison of TOF saturation schemes: a) saturation band that follows axial 
multi-slice acquisition from inferior to superior in an excluded subject, b) stationary 
saturation band below the uterine arteries in Subject 8, c) no saturation band in Subject 
20. The stationary saturation band provided uterine artery details without displaying 
extensive venous signal contamination. Details on how saturation configuration relates to 
direction of blood flow in 2D TOF angiography can be found in [108]. 

4D flow MRI was obtained with a prospectively-gated time-resolved 3D phase contrast sequence 

with three-directional velocity encoding. Each cine cardiac phase consisted of four-point velocity 

encoding, 2 segments/shot, and 5.5 ms TR resulting in a temporal resolution of 8TR=44 ms. 

Other imaging parameters were as follows: Parallel MRI With Extended and Averaged 

GeneRalized Autocalibrating Partial Parallel Acquisition Kernels (PEAK-GRAPPA) acceleration 

factor=4.7 [145], velocity encoding parameter (VENC)=50-200 cm/s [22], acquisition time=12-20 

min., number of cardiac phases=10-18 (Table 4). To reduce scan time, respiratory navigation or 

gating was not used. Online phase difference reconstruction with Maxwell correction of 

concomitant gradient terms was performed from the scanner [108, 146]. 

5.2.3.4 Image Analysis 

MRI Vascular Geometry Analysis 

The diameter of the UtAs were measured in the TOF multiplanar reformats at the location of 

intersection between the UtA and the external iliac artery on each side. Measuring the diameter of 
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the UtAs with US was not part of the study and therefore no area measurements were obtained to 

compute flow rate from US. 

4D Flow MRI Data Analysis 

Phase difference images from all the subjects were filtered and received anti-aliasing correction, 

if present (Figure 22.B.i), using custom software (Matlab; The MathWorks, Natick, MA, USA) 

[147]. Image noise was removed by magnitude image thresholding. All pixels below the threshold 

were removed from magnitude and phase data. Anti-aliasing was performed by phase 

unwrapping [148]. 

For the six subjects in Figure 25, additional masking was performed to reduce residual signal 

from outside the vessel regions (Figure 22.B.ii). Mean magnitude-weighted velocity phase 

contrast angiograms were generated as described in [147-149]. Additional manual segmentation 

was performed (Seg3D; Univ. of Utah SCI). The resulting binary segmentation was used to mask 

the magnitude and phase difference images. 

For all subjects, filtered magnitude and phase difference images were imported into flow analysis 

software (Ensight, CEI; Apex, NC). A vascular isosurface was generated by thresholding the 

phase difference images. Eight planes were selected along the UtAs (four on each side), with the 

plane normal oriented parallel to the flow direction. The planes were distributed uniformly 

between the branching point of the internal iliac artery and UtA and the intersection of the UtA 

and the external iliac artery. The distal location was confirmed by fiducial markers placed during 

US as described in the methods section. Pathlines were generated to visualize the movement of 

blood for confirming the direction of flow and data visualization. The vessel lumen was 

segmented at each time point, and velocity profiles were generated (Figure 22.B.iii-v). 
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Subject 16 Subject 25 Subject 30 Subject A Subject B Subject C

Condition/Outcome Normal Normal Normal Pre-pregnancy diabetes Chronic hypertension Chronic hypertension

GA (#weeks#days) 24w3d 26w5d 29w4d 26w4d 36w0d 36w3d

Maternal age (years) 22 27 23 32 23 20

Placental position

Posterior, far right Anterior, center Anterior, center Posterior, center Posterior, left Posterior

TOF Angiogram

 

Figure 24 Gestational age (GA), maternal age, placental position, and time-of-flight (TOF) 
angiogram of the pelvic arteries in three representative subjects (16, 25, 30) and three 
abnormal subjects (A, B, C). 

 

Figure 25 Uterine artery surface renderings obtained from 4D flow in three representative 
subjects and three abnormal subjects. There was considerable intersubject and 
intrasubject heterogeneity in the geometrical structure of the hairpin loop of the pelvic 
uterine arteries. 

Velocity Analysis 
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4D flow phase difference images provided 3D velocity information to generate a time-resolved 

waveform for each plane. Let vector ! = #$, #&, #'    at each voxel represent velocity in cm/s and !   

be the unit normal vector to the plane pointing in the direction of blood flow. Let !" = $ ∙ &   be the 

scalar component of the velocity vector along !   and parameterized as !"($, &)   where 

! ∈ {1, … , '}|'  =number of voxels in the prescribed plane and ! ∈ {1, … , '}|'  =number of cardiac 

phases in one RR interval. Spatial peak and mean velocity are defined for each phase as 

!",$(&) = max, !"(-, &)   and !",$(&) = )*(+,,)-
./0

1   , respectively. Temporal mean velocity is defined as 

!",$% = '(,)(+)-./0
%   . Time-resolved waveforms were generated from the spatial peak and mean 

velocities, !",$(&)   and !",$(&)  , at each plane. Since 4D flow was a prospectively-gated scan, some 

cardiac phases were not collected during end-diastole. Missing data were extrapolated by filling 

the rest of the RR interval with the average between the first and last measured velocity. 

Flow (Q) [mL/min] was computed from the spatial mean velocity waveforms from 4D flow. 

Pulsatility index (PI) and resistivity index (RI) were computed from both the spatial peak velocity 

waveforms from 4D flow and the Doppler velocity waveforms from US: 

Q= !
"" ∙

$%&
'() ∙ *+,-(/)123

12%   , 

PI=
!"#$ %&,((*)-!-.$ %&,( *

%&,(/
  , and 

RI=
!"#$ %&,((*)-!-.$ %&,( *

!"#$ %&,((*)
  , where 
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!  =cross-sectional area, RR=RR interval (sec), max$ %&,((*)  =systolic velocity, min$ %&,( )   =diastolic 

velocity, and !",$%  =temporal mean velocity. 

Q, PI, and RI were computed for each plane and were subsequently averaged together across 

the four planes per vessel. PI and RI were computed from the 4D flow MRI and US waveforms for 

comparison. For each subject, unilateral flow coefficient-of-variation (CoV) was determined. 

Intrascan reliability and inter- and intra-observer measurement reliability was performed. Most 

measurements had strong reliability (Table 7). 

5.2.3.5 Statistical Analysis 

Descriptive statistics are reported as mean±standard deviation(SD). Tests for statistical normality 

were performed on the 41 subjects were performed for statistical normality using the Shapiro-Wilk 

test and for heteroscedasticity using the Bartlett’s and Breusch-Pagan tests. Correlations 

between variables were assessed by computing Pearson’s R correlation coefficient for MRI flow 

rate and Spearman’s rank correlation coefficients (rho) for US and MRI velocity parameters. 

Comparisons between modalities were reported using Wilcoxon signed rank tests and Bland-

Altman plots. Statistical significance was defined as p<0.05. 

5.2.4 Results 

5.2.4.1 Subject Characteristics 

26 subjects were recruited in the second trimester and 15 subjects in the third trimester. Subjects 

had a maternal weight=74.8±13.6 kg and gestational age (GA)= 26.0±5.1 (range=18-38) weeks. 

Individual subject information is summarized in Table 5. 4D flow MRI was acquired and well-

tolerated in all subjects.  
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ID Maternal age 
(y) 

Maternal 
height 
(cm) 

Maternal weight 
(kg) 

Gestational Age 

(#weeks#days) 
Gravidity and 
Parity 

1 18 157 74 18w1d unknown 

2 34 155 49 18w3d G1P0 

3 32 170 82 18w4d G1P0 

4 18 165 62 18w5d unknown 

5 24 163 86 18w6d G4P3 

6 30 unknown 59 19w0d G1P0 

7 21 163 86 21w5d G2P1 

8 30 168 75 22w4d G1P0 

9 26 160 56 22w5d G1P0 

10 34 163 60 22w6d G2P1 

11 25 147 64 23w3d G2P1 

12 26 170 77 23w4d G2P1 

13 31 160 80 23w4d G7P6 

14 23 170 65 23w5d G2P1 

15 22 165 93 24w3d G3P2 

16 26 173 66 24w4d G3P2 

17 23 165 81 24w4d G1P0 

18 28 173 88 24w4d unknown 

19 20 155 57 25w3d G3P2 

20 33 168 85 25w3d G2P1 

21 19 175 106 25w4d G1P0 

22 41 157 66 25w5d G3P2 

23 34 152 68 25w5d G3P2 

24 32 178 89 26w4d G3P2 

25 27 160 56 26w5d G3P2 
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26 22 157 81 26w6d G3P2 

27 35 156 63 27w6d G2P1 

28 19 165 80 28w5d G1P0 

29 39 175 93 28w6d G4P3 

30 23 150 55 29w4d G1P0 

31 21 157 80 29w4d unknown 

32 28 157 74 29w6d G2P1 

33 31 165 65 30w3d G2P1 

34 26 168 86 30w3d G1P0 

35 34 170 69 31w1d G1P0 

36 21 170 92 31w2d G1P0 

37 25 157 86 31w4d G4P1 

38 20 170 56 32w6d G1P0 

39 33 165 88 35w4d G5P4 

40 28 168 96 37w2d G5P4 

41 32 170 82 37w3d G2P1 

Abbreviations: G=gravidity, P=parity 

Table 5 Subject demographic data 

5.2.4.2 Uterine Artery Anatomy in Second and Third Trimester 

In all subjects, right and left UtAs branched from the internal iliac artery, became a tortuous 

hairpin proximally, made a 180° turn from superior-inferior (SI) to IS trajectory, and became a 

distal straight segment towards the uterus before additional branching at the arcuate artery. UtA 

proximal segments were predominantly medial while distal segments were lateral and intersected 

the external iliac arteries at locations confirmed by MRI-compatible fiducials. Average UtA 

diameter within the imaged extent was 4.05±0.7 mm. 
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There was considerable inter- and intrasubject anatomical heterogeneity. GA, maternal age, 

maternal MRI position, placental position, and arterial TOF angiograms of six representative 

subjects are shown in Figure 24. Figure 25 shows heterogeneity in the geometry of the left and 

right UtA from the same six representative subjects (see also Supplementary Video 1 in [150]). 

5.2.4.3 Uterine Artery Hemodynamics 

Hemodynamic measurements from 4D flow MRI were reported as the average of measurements 

in four planes. Flow in the left UtA was !"  =291±111 mL/min, right UtA was !"  =322±147 mL/min, 

and bilateral (total) flow was !"  =606±221 mL/min. Flow rate measurement reliability statistics are 

reported in Section 5.2.4.5 and Table 7. There was no association between UtA bilateral flow 

and GA in these subjects (R2=0.01, p=0.49) (Figure 26). UtA structure and hemodynamics are 

shown using pathlines derived from one representative subject in Figure 27 and Supplementary 

Video 2 in [150]. 

MRI differed from US in terms of PI (0.72±0.26 vs. 0.84±0.42, p=0.05) and RI (0.47±0.11 vs. 

0.50±0.11, p=0.13) based on Wilcoxon signed rank tests (Figure 28). MRI and US were also 

moderately correlated in terms of systolic velocity (ρ=0.39, p<<0.01), diastolic velocity (ρ=0.42, 

p<<0.01), mean velocity (ρ=0.44, p<<0.01) (Figure 29), PI (ρ=0.37, p<<0.01), and RI (ρ=0.38, 

p<<0.01) (Figure 30). 
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Figure 26 Scatter plot of flow vs. gestational age across forty-one subjects with results 
from a linear fit and Pearson’s correlation analysis including 95% confidence interval (gray 
region). Red dots indicate abnormal subjects (A,B,C). 
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Figure 27 a) The eight 4D flow planes, four planes on each side, distributed along the UtAs 
in Subject 30. Planes R4 and L4 were estimated to correspond with the location of Doppler 
US velocity measurements. The interpolated velocity profiles of planes R1 (b), R2 (c), R3 
(d), and R4 (e) are shown. 
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Figure 28 Box-and-whisker and Bland-Altman plots of pulsatility index (a,b) and resistivity 
index (c,d) comparing MRI and US. 

5.2.4.4 Feasibility in Subjects with Risk Factors for Adverse Pregnancy 

We separately identified three subjects with representative risk factors for adverse pregnancy, 

one with pre-pregnancy diabetes mellitus and two with chronic hypertension. In these subjects, 

4D flow MRI was feasible. Individual subject information is reported in Table 6. For Subject A with 

diabetes, we measured !"  =655.5 mL/min and average unilateral PI=0.61. For Subject B with 

chronic hypertension, we measured !"  =502.4 mL/min and PI=0.75. For Subject C with chronic 

hypertension, we measured !"  =904.4 mL/min and PI=0.57. These results demonstrate that 

measurement of these hemodynamic parameters were feasible in abnormal pregnant subjects 

with 4D flow MRI. These subjects are presented in Figure 24 and Figure 25. Their results are 

annotated in Figures 26, 28-30. 
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Table 6 Abnormal subject demographic data 

ID Maternal 
age (y) 

Maternal 
height 
(cm) 

Maternal weight 
(kg) 

Gestational 
Age 

(#weeks#days) 

Gravidity and 
Parity Risk Factor 

A 25 175 84 19w1d unknown Diabetes 
mellitus 

B 23 160 83 36w0d G1P0 Chronic 
hypertension 

C 20 168 96 36w3d G2P1 Chronic 
hypertension 
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Figure 29 Box-and-whisker, Spearman’s rho correlation coefficients with linear fit, and 
Bland-Altman plots comparing MRI and US in terms of systolic velocity (a,b,c), diastolic 
velocity (d,e,f), and mean velocity (g,h,i). 
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Figure 30 Spearman’s rho correlation coefficients with linear fit comparing MRI and US in 
terms of PI (a) and RI (b). 

5.2.4.5 Reliability analysis of 4D flow MRI measurements 

We include supplementary information reported in Hwuang et al. [150] to further discuss the 

reliability of 4D flow MRI by taking into account potential confounders. This section provides 

details on how 4D flow MRI was assessed in terms of: 1) reliability in repeated measurements of 

flow rate, 2) comparison with US after removing temporal resolution differences, and 3) eddy 

current correction. 

Flow Rate Reliability Analysis 



www.manaraa.com

92 

 

To determine scan-rescan reliability of step A.iii (Figure 22), two subjects were scanned twice 

consecutively in an imaging session and the intraclass correlation coefficient (ICC) of the flow 

rate was determined. To determine interobserver measurement reliability, two users each 

performed post-processing steps B.i, B.iii, B.iv (Figure 22) and the ICC was determined for 

bilateral and unilateral flow. To determine intraobserver measurement reliability, one user 

performed post-processing steps B.i, B.iii, B.iv and B.iv (contouring alone) and the ICC was 

determined for bilateral and unilateral flow. Scan-rescan, interobserver, and intraobserver 

reliability were measured by ICC(consistency) and ICC(absolute agreement) based on results 

from two-way analysis of variance (ANOVA) without replication using the procedure described in 

[151]. The results are reported in Table 7. We also measured the variation across the four planes 

prescribed in each UtA in the forty-one subjects. The average of standard deviation across the 

four planes was 78.9 mL/min in the right UtA and 68.5 mL/min in the left UtA. The coefficient of 

variation of unilateral flow was 27.4±16.6% in the right UtA and 24.0±10.6% in the left UtA. 

Scenario in which Q was measured: ICC (consistency) ICC (absolute 
agreement) 

1. Unilateral flow intrascan reliability 
(n=2)^ 

0.99 0.83 

2. Bilateral flow measurement 
interobserver reliability n=5)* 

0.98 0.86 

3. Unilateral flow measurement 
interobserver reliability (n=5)*  

0.98 0.89 

4. Bilateral flow measurement 
intraobserver reliability (n=5)* 

0.90 0.68 

5. Unilateral flow measurement 
intraobserver reliability (n=5)* 

0.89 0.79 

6. Unilateral flow measurement 
intraobserver reliability (n=1)# 

>0.99 >0.99 

^reliability of step A.iii of Figure 22 

*reliability of steps B.i, B.iii, and B.iv of Figure 22 

#reliability of step B.iv of Figure 22 
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Table 7 ICC results for reliability experiments with repeated flow rate measurements using 
4D flow. ICC (consistency) and ICC (absolute agreement) were computed from the results 
of a two-way ANOVA. 

Temporal Resolution in MRI-US Comparisons 

We were interested in seeing if the difference in temporal resolution between MRI and US played 

a role in the agreement between the two modalities when measuring velocity-based parameters. 

While the US parameters reported in the main text were given by the US machine, we separately 

processed the waveforms for this supplementary analysis. The US velocity waveforms from each 

UtA were extracted from the images by cropping, binary thresholding, and edge detection in 

MATLAB (MathWorks; Natick, MA). The US data (~160-360 points/cardiac cycle) was 

downsampled to match the temporal resolution of 4D flow MRI (~14 cardiac phases). We then 

repeated the MRI-US comparative statistical analyses (Wilcoxon signed rank test, Spearman’s 

rho correlation coefficient, and Bland-Altman plot) with the downsampled version of the US 

waveforms. The results are reported in Table 8. In general, it appears that the downsampled US 

measurements were closer than the original US machine measurements to the MRI 

measurements, indicating that the difference in temporal resolution may play a role in the 

agreement between MRI and US. 
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Table 8 Comparison of MRI, US, and downsampled US (USds) velocity-based parameters. 
We report mean±standard deviation, Wilcoxon signed rank test p-value, Spearman’s rho 
correlation coefficient (ρ) with p-value, and Bland-Altman mean difference with limits of 
agreement based on a 95% confidence interval. 

Eddy Current Correction 

While we did not perform eddy current correction (ECC) in the original 4D flow cohort, we were 

interested in assessing the impact of ECC on the results. Therefore, in six subjects we performed 

steps B and C (Figure 22) with the addition of eddy current correction using custom software 

(Matlab; The MathWorks, Natick, MA, USA) developed by UKL Freiburg and NU Radiology [147]. 

We report ICC between flow measurements generated with and without ECC (Table 9). The 

paired Wilcoxon signed rank test between the two versions of unilateral flow was not significant 

(p=0.08). We also present a Bland-Altman plot of unilateral flow rate (Figure 31). 

Scenario in which Q was measured: ICC (consistency) ICC (absolute agreement) 
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1. Bilateral flow measurement (n=5)* 0.86 0.84 

2. Unilateral flow measurement (n=5)*  0.92 0.89 

Table 9 Comparison of flow measurements using 4D flow with and without eddy current 
correction. 

 

Figure 31 Bland-Altman plot of unilateral UtA flow rate measured with 4D flow MRI with 
and without eddy current correction (ECC). The mean difference was 35.12 mL/min with 
95% limits of agreement [-73.57,143.8] mL/min. 

5.2.5 Discussion 

We report the feasibility of UtA anatomical and hemodynamic assessment in second and third 

trimester pregnant subjects using 4D flow MRI acquired at 1.5T. 4D flow images enabled detailed 

characterization of the UtA blood flow, independent of the orientation of the examination plane, 

and at locations inaccessible to US. After branching from the internal iliac artery, the tortuous UtA 

traversed inferiorly and medially, formed a hairpin loop in the pelvis, and subsequently carried 

blood superiorly and laterally to radial and spiral arteries. This anatomy has been partly described 

in embolization procedures for peripartum hemorrhage [152, 153], however there is limited 

knowledge of its normal and pathophysiologic anatomical variation. We observed substantial 
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bilateral UtA anatomical and hemodynamic heterogeneity, which may reflect variations in 

placental location, molecular signals that promote UtA remodeling and growth, body habitus, and 

variations in patient position during imaging. 

UtA diameter derived from TOF agreed with previous reports obtained using 2D phase contrast 

MRI [20, 154] and US [63, 155]. UtA outward hypertropic remodeling occurs throughout gestation 

and the vessel cross-sectional area enlarges [46, 63, 155]. Similar positive associations between 

flow rate and GA have also been reported [63, 142]. These studies show a moderate association 

between flow and GA in the first trimester [142], but a comparatively weaker association in the 

second and third trimester [63], suggesting that the most extensive UtA remodeling occurs during 

the first trimester. Our findings in second and third trimester subjects were consistent with this, 

and no substantial blood flow changes in the late second and third trimesters were found. This 

contrasts with fetal weight growth, which is slower in the first two trimesters than the third [105]. 

Altogether, these findings suggest that during early placental development the UtAs are primed to 

increase blood flow so that the placenta may have sufficient reserve to accommodate changes in 

fetal oxygen demand during late gestation. Failure of UtA growth and remodeling with placental 

dysfunction in the first trimester may limit fetal growth in later trimesters. 

There was moderate correlation between PI and RI obtained using MRI and US, which was 

consistent with prior observations using 2D phase contrast MRI [21]. However, some observed 

discordance between MRI and US may be attributed to hemodynamic differences caused by 

body habitus [156] during MRI (mostly supine) and US (inclined supine), location of 

measurement, and differences in temporal and spatial resolution. Previous studies have reported 

flow rate measured with US [142, 155, 157] but this was omitted in this study. US-based flow rate 

requires measurement of diameter, which has not yet been standardized in obstetric research 

because the UtA lumen is not always clearly visible from low spatial resolution and vessel 

tortuosity. 
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Time-resolved three-dimensional velocity field data can be used to compute additional complex 

flow parameters such as relative pressure gradients [158], pulse wave velocity [159], and wall 

shear stress [159]. These flow parameters in the UtA may provide new predictive markers of 

pregnancy health in early gestation. Decreased vascular resistance at the uteroplacental junction 

increases UtA blood flow, which may increase wall shear stress and stimulate endothelial 

production of nitric oxide (NO) [46, 60, 160]. Targeted therapies such as dietary arginine 

supplementation may increase NO production, vasodilatory remodeling, and improve UtA flow 

[13]. Additional imaging markers may improve the predictive value of these studies. 

All MRI scans performed in this study were below the limit mandated by the United States Food 

and Drug Administration (FDA). No additional restrictions were placed on the hardware beyond 

the current FDA limitations on rate of time-varying magnetic fields (dB/dt) and maximum 

allowable specific absorption rate (SAR). While caution is recommended when imaging obstetric 

patients, most recent guidelines have identified MRI to be safe in this population because 

concerns about harm to the fetus remain theoretical with no established clinical evidence [161, 

162]. The American College of Radiology states that no special considerations need to be made 

for women in their first trimester more than any other trimester [163]. Studies of MRI in pregnancy 

have shown MRI exposure to not pose a concern for adverse fetal outcome in the first trimester 

[126] and after the first trimester [164, 165]. In this study, no additional safety considerations were 

enforced beyond the FDA requirements. 

This cross-sectional study may be affected by physiologic subject variation (e.g. height, weight, 

and internal iliac branching geometry) that can potentially be reduced with a longitudinal study. 

Subjects can also vary in the distribution of flow between the uterine and ovarian arteries. As a 

result, interpretations about placental perfusion from only UtA flow assessment can be 

misleading. It is possible that the ovarian arteries also remodel during gestation because the PI 

has been found to be lower than in non-pregnant subjects similar to the UtA [166, 167]. There are 
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also some limitations of 4D flow assessment of UtA function. The tortuous UtAs may cause MRI 

acceleration and displacement artifacts such as inaccurate velocity encoding and spatial 

encoding. The current spatial resolution may preclude accurate flow quantification in the first 

trimester. In non-pregnant subjects scanned during protocol development, we observed that the 

UtA was not readily visible. Even when the UtA is visible in pregnant subjects, three voxels span 

the vessel at best, which does not allow the calculation of pressure gradient or wall shear stress. 

Pulse wave velocity can possibly be calculated with high temporal resolution or a long vessel path 

to compensate for low spatial resolution. Nevertheless, our 4D flow acquisition has a spatial 

resolution that is superior to the state-of-the-art of 2D PC acquired of the UtA reported in [154]. 

Respiratory gating was not performed in our subjects to reduce scan time as much as possible. 

Consequently, potential sources of artifacts include fetal and peristaltic motion. Further 

investigation is needed to determine if respiratory gating reduces artifacts sufficiently to justify the 

additional scan time. Future work leveraging more highly parallelized acquisitions and sparse 

imaging methods may also be needed to increase spatial resolution and/or reduce scan time. 

This may allow us to robustly image the UtA in the first trimester, compute complex flow 

parameters, and provide a larger FOV to capture more distal segments of the ascending UtA later 

in pregnancy.  

5.2.6 Conclusions 

This study shows the feasibility to characterize UtA anatomy and hemodynamics using 4D flow 

MRI in second and third trimester pregnancies. Expected flow characteristics were validated 

across GA with no observed bias with respect to transabdominal Doppler US. 
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CHAPTER 6: PATHOPHYSIOLOGY OF HYPERTENSIVE 

PREGNANCY DISORDER AS ASSESSED USING NON-INVASIVE 

IMAGING 

6.1 Review of US assessment of uterine artery to screen for HPD 

Screening studies have been conducted to assess the utility of uterine artery Doppler ultrasound 

for predicting the development of HPD. Despite high specificity and high negative predictive 

value, uterine artery Doppler ultrasound had poor positive predictive value, meaning that many 

women with abnormal uterine artery waveforms had normal pregnancies. It also had poor 

sensitivity, especially missing women who would develop late-onset preeclampsia [139, 168]. 

More recently, researchers sought to improve upon screening for HPD in the first trimester by 

developing multi-parametric models combining uterine artery Doppler ultrasound with maternal 

factors and serum biomarkers [16, 17]. However, this approach is still under investigation. The 

following study begins to examine the performance of MRI-based uterine artery assessment in 

relation to clinical outcome and compares it to the performance of ultrasound. Uterine artery flow 

measured by MRI was significantly lower in pregnant women with preeclampsia and/or small-for-

gestational age deliveries than in normal pregnant women. 

6.2 Uterine artery assessment by 4D flow MRI in association with delivery 

outcomes 

6.2.1 Abstract 

Clinical assessment of uterine artery (UtA) hemodynamics is currently limited to ultrasound (US) 

Doppler velocimetry. We previously demonstrated the feasibility of 4D flow magnetic resonance 

imaging (MRI), which allows flow quantification throughout the entire vessel, to evaluate UtA 
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hemodynamics during pregnancy. In this study, we seek to further validate the physiologic 

relevance of 4D flow MRI measures of UtA blood flow rate by exploring their associations with 

pregnancy outcomes relative to US-based metrics. 

This was a cross-sectional study of 87 singleton pregnant women, enrolled between May 2016 

and April 2019, who underwent a 4D flow MRI scan to measure UtA pulsatility index (PI) and 

blood flow rate (in mL/min). UtA PI was also measured using US. The primary outcome was a 

composite (COMP) of either preeclampsia (PEC), small for gestational age (SGA), or both 

PEC+SGA. The secondary outcomes were PEC and SGA individually. Wilcoxon rank-sum tests 

were performed to study the ability of MRI-flow, MRI-PI, and US-PI to distinguish between no 

disease versus disease. Linear regression was also performed to study MRI-flow versus 

gestational age (GA). 

Of the 74 subjects that were analyzed, 18 subjects were COMP: PEC (n=3), SGA (n=11), and 

both PEC+SGA (n=4). Additionally, one subject excluded from the analysis had an intrauterine 

fetal demise (IUFD). When comparing subjects with and without COMP, no differences in 

maternal age, body mass index (BMI), nulliparity, gravidity, or race were found. In 66 of the 74 

subjects US data was also available. Both median MRI-PI (0.95 vs. 0.70, p<0.01) and median 

US-PI (0.95 vs. 0.73, p<0.01) were significantly increased in subjects with COMP compared to no 

COMP. UtA blood flow rate, as measured by MRI, did not significantly increase from 2nd to 3rd 

trimester (median flow [interquartile range]=543[419,698] vs. 575[440,746] mL/min, p=0.77), but it 

was significantly lower in COMP compared to no COMP (median flow [interquartile 

range]=486[366,598] vs. 623[457,749] mL/min, p=0.04). The AUCs for MRI-flow, MRI-PI, and US-

PI in predicting COMP were comparable (0.69, 0.74, and 0.73) with non-significant differences 

among the three AUCs (p=0.87). 
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4D flow MRI can yield physiologic measures of UtA blood flow rate and PI that are associated 

with adverse pregnancy outcomes. This may open new avenues in the future to explore more 

robust MRI-based evaluation of UtA hemodynamics in pregnancy. 

6.2.2 Introduction 

Doppler ultrasound (US) assessment of the maternal uterine arteries (UtAs) has shown promising 

results for predicting risk of adverse pregnancy outcomes [16, 17], but the multiparametric models 

required for these assessments are more complex than current clinical US practice. US also has 

inherent limitations, such as its sensitivity to the angle between the device and the interrogated 

flow direction, that preclude accurate and reproducible assessment of UtA remodeling and 

hemodynamic function during pregnancy [141]. The Nulliparous Pregnancy Outcomes Study: 

Monitoring Mother-to-be (nuMoM2b) study found UtA Doppler US to have low positive predictive 

value in predicting small-for-gestational-age neonates [18]. Other studies have reported variable 

results depending on gestational age of onset of preeclampsia [169] and superimposed fetal 

growth restriction [170]. Mounting evidence suggests that some women with abnormal 

trophoblast invasion have normal UtA Doppler waveforms while others with abnormal UtA 

Doppler waveforms have healthy deliveries [171, 172]. Thus, a more robust tool to investigate 

UtA remodeling and hemodynamics during pregnancy is still needed. 

Four-dimensional (4D) flow magnetic resonance imaging (MRI) time-resolves each component of 

the blood flow velocity vector along with morphological data in a single, non-invasive, non-ionizing 

scan [173]. This is advantageous given the complex hemodynamic nature in various 

cardiovascular conditions. Therefore, it has successfully been used to measure advanced 

parameters such as pressure and wall shear stress [158, 174-176]. During pregnancy, a key 

advantage of 4D flow MRI is its large spatial coverage allowing for evaluation of the entire course 

of the UtA. We previously demonstrated that this modality is technically feasible in pregnant 

women [150] but did not correlate UtA flow measurements with pregnancy outcomes. In this 
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study, we sought to further validate the 4D flow MRI measures of UtA blood flow by exploring the 

association of these measures with adverse pregnancy outcomes and by comparing these 

associations with similar associations drawn from Doppler US. 

6.2.3 Methods 

6.2.3.1 Study participants 

A total of 87 singleton pregnant subjects were enrolled between May 26, 2016 and April 25, 2019 

in this cross-sectional study approved by the institutional HIPAA-compliant Institutional Review 

Board. Inclusion criteria included singleton gestations at 15 weeks or greater. Exclusion criteria 

were: (1) morbid obesity (pre-gravid BMI ≥ 35), (2) major structural fetal anomaly, (3) routine MRI 

contraindications such as metallic implants/devices and claustrophobia. For some analyses 

involving comparison with outcomes, subjects lost to follow-up after MRI were not included, and 

subjects with intrauterine fetal demise (IUFD) were analyzed separately from deliveries after 24 

weeks with neonates that reached viability. Only subjects whose pregnancies reached viability 

and whose obstetric outcomes were available were included in analyses comparing MRI to 

pregnancy outcomes. For analyses involving associations between US-pulsatility index (PI) and 

pregnancy outcomes, subjects without US scans were not included. Pregnancy outcomes were 

extracted from the medical record. The primary outcome was a composite (COMP) of either or 

both preeclampsia (PEC), as defined by the American College of Obstetricians and 

Gynecologists criteria [78], and small for gestational age (SGA) defined as birth weight <10th 

percentile [177]. Secondary outcomes were PEC and SGA individually. Both MRI-PI and MRI-

flow were each analyzed as predictors of the outcomes, while US-PI was also analyzed as a 

predictor of outcome for comparison. 
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6.2.3.2 Measurement of PI and flow with 4D flow MRI 

Prospective ECG-gated 4D flow MRI [150] at 1.5T (Avanto, Siemens Healthineers, Erlangen, 

Germany) was acquired of the UtAs and external iliac arteries near the internal orifice of the 

cervix (Fig. 32) using a 12-channel spine and two 4-channel body matrix coils. The sequence 

parameters were: flip angle=8°, repetition time/echo time=5.5/3ms, voxel 

size=1.25x1.25x1.25mm3
, field-of-view=320x200x60mm3, bandwidth per pixel=445-455 Hz/pixel, 

segments/shot=2, temporal resolution=42.4-46.4ms, acceleration factor=4.7, velocity encoding 

(VENC)=100 cm/s, number of cardiac phases=10-18, and scan time=12-20 minutes depending 

on subject’s heart rate. Noise was removed from the velocity maps with thresholding and four 

planes distributed along each vessel were manually prescribed to extract velocity maps at each 

plane location (Ensight, CEI; Apex, NC). On each velocity map, the UtA was manually contoured 

using custom software (Matlab; The MathWorks, Natick, MA, USA). MRI-PI was computed from 

the spatial maximum MRI velocity waveforms as !" = (%&'(-%&*+)/%   and averaged across the 

four planes for each vessel, where !"#$  =temporal maximum velocity, !"#$  =temporal minimum 

velocity, and !  =temporal mean velocity. UtA flow rate (mL/min) was computed from the spatial 

mean MRI velocity waveforms and vessel cross-sectional area and averaged across the four 

planes for each vessel (Fig. 32). More details about the MRI acquisition, post-processing 

procedure, repeatability of 4D flow MRI scans, and interobserver reproducibility of post-

acquisition measures were previously described [150].  
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Figure 32 Diagram outlining methodological workflow: a) MRI localizer, b) time-of-flight 
MRI angiogram, and c) 4D flow MRI were collected from UtAs. 4D flow post-processing 
consisted of extracting velocity waveforms from each plane (example for Plane R1 shown 
in (d)). e) Transabdominal Doppler US was collected from the UtAs. MRI-flow was 
computed by multiplying cross-sectional area (CSA) by mean velocity (!  ) from 4D flow 
data. MRI-PI and US-PI were computed from 4D flow MRI and US waveforms, where 
vmax=systolic maximum velocity and vmin=diastolic minimum velocity. For each subject, 
MRI-flow was averaged across four planes in each UtA and added together for total 
bilateral MRI-flow used in subsequent statistical analysis. MRI-PI and US-PI were also 
averaged from repeated measurements or planes and additionally averaged from both 
UtAs. 

6.2.3.3 Measurement of PI with Doppler US 

Each subject was positioned in semi-recumbent supine. The UtAs were scanned using the C4-8 

transabdominal probe of a GE Voluson E10 (GE Healthcare, Wisconsin, United States) US 

machine by a Maternal Fetal Medicine clinician (Nadav Schwartz, MD) with extensive experience 
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in prenatal US. An average of three measurements of UtA Doppler PI values were recorded 

bilaterally. 

6.2.3.4 Statistical Analysis 

MRI-flow, MRI-PI, and US-PI values are reported as median and interquartile range (IQR, 25%-

75%) or mean and standard deviation (SD). Scatter plots of MRI-flow versus gestational age (GA) 

were generated and R-squared calculated from fitting linear regression models. Wilcoxon rank-

sum test was used to investigate differences in MRI-flow, MRI-PI, and US-PI between the 

pregnancies with and without one of the three outcomes (COMP, PEC, and SGA). We also report 

adjusted results after accounting for demographic parameters that were statistically significantly 

different between COMP and no COMP. In addition, Spearman’s correlation and Wilcoxon 

signed-rank test were used to compare between MRI-PI and US-PI. Receiver-operating 

characteristics (ROC) curves and the corresponding area under the curve (AUC) were generated 

for MRI-flow, MRI-PI, and US-PI across outcomes, and a Wald test was used to compare the 

AUC values associated with MRI-PI and US-PI. Statistical significance was considered at p<0.05. 

Statistical analysis was performed using Stata 14.2 (College Station, TX). 

6.2.4 Results 

6.2.4.1 Delivery Outcomes and Exclusions 

After recruitment for MRI, 4D flow post-processing, and applying exclusions for analysis, data 

from 74 pregnant subjects were analyzed for both UtAs (Fig. 33, Table 10). The remaining 

subjects included one with IUFD and 7 subjects lost to follow-up. Of the 74 subjects, 18 

developed a COMP outcome, including 3 with PEC, 11 with SGA, and 4 with both. In 66 of the 74 

subjects US Doppler data was acquired on the same day as MRI (Fig. 33, Table 11). No 

significant demographic differences between COMP and no COMP were found in terms of age, 

race, BMI, nulliparity, and gravidity (Table 11). However, in comparison to no COMP subjects, the 
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COMP subjects were scanned at later GA and delivered at earlier GA with lower birthweight. 

They also had higher rates of chronic hypertension (CHTN). 39 out of the 74 subjects (35 out of 

the 66 subjects) were also reported in a previous study [150]. 

 

66 subjects additionally received US exam 
(including UtAs)

Analysis: MRI-PI, US-PI vs. outcomes 
box-and-whisker plots; MRI-PI, US-PI 

ROC curves

87 subjects recruited from May 26, 2016 to 
April 25, 2019, had 4D flow acquired and 

analyzed, MRI-PI and MRI-flow measured

Excluded 8 scans because no 
US performed

82 subjects had bilateral UtAs measured

Excluded 5 scans because 
only one UtA visible

Excluded 7 scans because 
subjects lost to follow-up (no 
outcomes)

74 subjects had outcomes recorded
Analysis: MRI-flow vs. GA; MRI-flow vs. 
outcomes box-and-whisker plots; MRI-

flow ROC curves

Excluded 1 scan with IUFD 
to discuss separately from 
main statistical analyses

18 subjects developed COMP

56 subjects developed no COMP

 

Figure 33 Diagram of exclusion criteria for analysis 

 

  Cohort with 
Delivery Info COMP No COMP p-value 

N (%) 74 (100) 18 (24) 56 (76) 

 Age (std) 27.5 (6.2) 26.2 (5.9) 27.9 (6.3) 0.315 
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Race 

   

0.223 

     Black (%) 53 (72) 16 (89) 37 (66) 

      White (%) 16 (22) 2 (11) 14 (25) 

      Other (%) 5 (7) 0 (0) 5 (9) 

 BMI (IQR) 30.2 (26.2-33.3) 30.2 (25.2-34.6) 30.2 (26.2-32.7) 0.99 

Nulliparity (%) 41 (55) 9 (50) 32 (57) 0.596 

Gravidity (IQR) 2 (1-3) 2 (1-3) 2 (1-3) 0.521 

CHTN (%) 6 (8) 4 (22) 2 (4) 0.028* 

GDM (%) 6 (8) 2 (11) 4 (7) 0.592 

GA at delivery 
(IQR) 39.3 (37.9-40.1) 37.3 (37.1-39.0) 39.5 (38.4-40.6) 0.001* 

Birthweight (g) 
(IQR) 

3147.5 (2680-
3620) 2375 (2015-2685) 

3310 (3072.5-
3679.5) 0.001* 

GHTN (%) 16 (22) 6 (33) 10 (18) 0.165 

PEC (%) 7 (9) 7 (39) 0 (0) 0.001* 

SGA (%) 15 (20) 15 (83) 0 (0) 0.001* 

GA at MRI (IQR) 28.4 (23.6-32.9) 31.6 (25.7-36.4) 26.6 (23.1-31.2) 0.009* 

Total Uterine 
Artery Flow 
(mL/min) - MRI 
(IQR) 

591.8 (440.9-
742.5) 

486.1 (366.1-
598.2) 

623.8 (456.6-
748.6) 0.038* 

Table 10 Demographic information for subjects with delivery info, divided into subsets 
COMP and no COMP. BMI=body mass index, CHTN=chronic hypertension, 
GDM=gestational diabetes mellitus, GA=gestational age, GHTN=gestational hypertension, 
PEC=preeclampsia, SGA=small-for-gestational age, PI=pulsatility index, %=percentage, 
std=standard deviation, IQR=interquartile range (25%-75%), p-values reported from two-
sample Wilcoxon rank-sum test, *p<0.05 

  Cohort with 
Delivery & US Info COMP No COMP 

p-
value 

N (%) 66 (100) 15 (23) 51 (77) 

 Age (std) 28.1 (6.3) 27.2 (6.0) 28.3 (6.4) 0.542 

Race 

   

0.289 
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     Black (%) 46 (70) 13 (87) 33 (65) 

      White (%) 15 (23) 2 (13) 13 (25) 

      Other (%) 5 (8) 0 (0) 5 (10) 

 BMI (IQR) 30.6 (26.2-33.4) 31.3 (25.5-35.0) 30.4 (26.2-32.6) 0.493 

Nulliparity (%) 34 (52) 6 (40) 28 (55) 0.31 

Gravidity (IQR) 2 (1-3) 2 (1-3) 2 (1-3) 0.675 

CHTN (%) 6 (9) 4 (27) 2 (4) 0.021* 

GDM (%) 6 (9) 2 (13) 4 (8) 0.516 

GA at delivery (IQR) 39.1 (37.7-40.0) 37.1 (36.7-39.0) 39.4 (38.3-40.3) 0.001* 

Birthweight (g) (IQR) 3142.5 (2685-3640) 2380 (1885-2690) 
3350 (3050-
3740) 0.001* 

GHTN (%) 16 (24) 6 (40) 10 (20) 0.105 

PEC (%) 7 (11) 7 (47) 0 (0) 0.001* 

SGA (%) 12 (18) 12 (80) 0 (0) 0.001* 

GA at MRI and US 
(IQR) 27.4 (23.4-32.9) 31.6 (25.7-36.4) 25.6 (22.6-31.1) 0.013* 

Uterine Artery PI, 
Right - US (IQR) 0.71 (0.62-0.99) 0.84 (0.71-1.14) 0.69 (0.58-0.96) 0.015* 

Uterine Artery PI, 
Left - US (IQR) 0.79 (0.67-0.92) 0.91 (0.76-1.67) 0.78 (0.65-0.87) 0.008* 

Uterine Artery PI, 
mean - US (IQR) 0.78 (0.67-1.03) 0.95 (0.76-1.37) 0.73 (0.64-0.92) 0.007* 

Uterine Artery PI, 
Right - MRI (IQR) 0.71 (0.58-0.91) 0.91 (0.67-1.08) 0.68 (0.56-0.87) 0.043* 

Uterine Artery PI, 
Left - MRI (IQR) 0.75 (0.60-0.94) 0.91 (0.70-1.43) 0.73 (0.56-0.84) 0.014* 

Uterine Artery PI, 
mean - MRI (IQR) 0.75 (0.63-0.94) 0.95 (0.75-1.13) 0.70 (0.61-0.86) 0.006* 

Total Uterine Artery 
Flow (mL/min) - MRI 
(IQR) 

616.4 (451.8-748.1) 469.8 (356.4-
630.4) 

648.2 (480.6-
755.4) 0.023* 

Table 11 Demographic information for subjects with delivery and US info, divided into 
subsets COMP and no COMP. BMI=body mass index, CHTN=chronic hypertension, 
GDM=gestational diabetes mellitus, GA=gestational age, GHTN=gestational hypertension, 
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PEC=preeclampsia, SGA=small-for-gestational age, PI=pulsatility index, %=percentage, 
std=standard deviation, IQR=interquartile range (25%-75%), p-values reported from two-
sample Wilcoxon rank-sum test, *p<0.05 

6.2.4.2 MRI-flow with GA and Delivery Outcomes 

Median total UtA blood flow (sum of left and right UtA flow) was 592 (IQR 441-742) mL/min in the 

74 subjects. There was no correlation with GA (y=-0.47x+614.67, R2<0.01, p=0.91). Fig. 34 

shows a scatterplot of MRI-flow values along GA. The subject with IUFD imaged at 15 weeks 

gestation had lower flow than the other subjects at 109.5 mL/min with normal US-PI of 1.98 and 

MRI-PI of 1.92. When evaluating COMP and no COMP subjects separately, median UtA blood 

flow was 486.1 (IQR 598.2-366.1) mL/min in the 18 COMP subjects and 623.8 (IQR 456.6-748.6) 

mL/min in the 56 no COMP subjects. As a group, the COMP subjects had slightly lower flow than 

the no COMP group, particularly in the second trimester. No correlations between UtA flow and 

GA were found in the COMP group (y=6.14x+314.75, R2=0.06, p=0.34) and no COMP group 

(y=1.20x+599.67, R2<0.01, p=0.82). The two-sample Wilcoxon rank-sum test showed a reduction 

in MRI-flow in COMP subjects (p=0.04), with a trend towards reduction when examining PEC 

(p=0.08) and SGA (p=0.08) individually. Box-and-whisker plots of MRI-flow in the 74 subjects with 

delivery outcomes are available in Fig. 35. After adjusting for GA (at MRI) and CHTN, mean ± SD 

MRI-flow was 496.9 ± 54.6 mL/min in COMP and 635.0 ± 29.8 mL/min in no COMP subjects 

(p=0.03). In the 18 COMP subjects, there was an average of 40 ± 35 days between the imaging 

exam and delivery. In 16 of the 18 subjects, diagnoses of PEC and SGA were recorded at 

delivery. 
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Figure 34 Scatterplot of MRI-flow vs. GA in 74 pregnant subjects with significantly lower 
median total uterine artery flow in no COMP compared to COMP subjects (dashed lines). 
Correlation was not found between MRI-flow and GA for all subjects, COMP, and no 
COMP. The red “X” indicates the total uterine artery flow of the IUFD subject for visual 
comparison. 
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Figure 35 In the 74 subjects with delivery outcomes recorded, we present the box-and-
whisker plots of MRI-flow showing difference in a) no COMP vs. COMP (p=0.04), b) no 
COMP vs. PEC (p=0.08), c) no COMP vs. SGA (p=0.08). In the 66 subjects with US data 
available, we present box-and-whisker plots showing difference in d,g) no COMP vs. 
COMP by MRI-PI (p<0.01) and US-PI (p<0.01), e,h) no COMP vs. PEC by MRI-PI (p<0.01) and 
US-PI (p=0.02), and f,i) no COMP vs. SGA by MRI-PI (p=0.03) and US-PI (p<0.01). Red “X” 
shows MRI-flow, MRI-PI, and US-PI for the IUFD subject. 
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6.2.4.3 MRI-PI and US-PI with Delivery Outcomes 

A comparison between MRI-PI and US-PI showed a moderate Spearman’s correlation with 

ρ=0.69 (p<0.01) and significant bias with median MRI-PI=0.75 (IQR 0.63-0.94) and median US-

PI=0.78 (IQR 0.67-1.03) (p<0.01). Both MRI and US techniques were able to detect increased PI 

in the 15 subjects with COMP (out of 66 subjects) (MRI-PI: p<0.01; US-PI: p<0.01) (Fig. 35). 

These differences in both MRI and US PI remained significant when looking at PEC (MRI-PI: 

p<0.01; US-PI: p=0.02) and SGA (MRI-PI: p=0.03; US-PI: p<0.01) as individual outcomes as well. 

After adjusting for GA (at MRI and US) and CHTN, MRI-PI was 1.02 ± 0.07 for COMP and 0.72 ± 

0.04 for no COMP (p<0.01); US-PI was 1.23 ± 0.1 for COMP and 0.81 ± 0.05 for no COMP 

(p<0.01). 

6.2.4.4 MRI-flow, MRI-PI, and US-PI ROC Curves 

The ROC AUCs provided by MRI-flow for no COMP, no PEC, and no SGA were 0.66, 0.69, and 

0.64, respectively for the 74 subjects (Fig. 36). The AUC values from MRI-PI vs. US-PI for the 

following groups in the 66 subjects were also compared. Further, no significant difference was 

found between the two modalities: COMP (0.74 vs. 0.73, p=0.94), PEC (0.84 vs. 0.75, p=0.31), 

and SGA (0.69 vs. 0.75, p=0.40) (Fig. 37). In Fig. 38, the ROC curves from MRI-flow, MRI-PI, and 

US-PI were compared in the 66 subjects which show no significant difference in predicting COMP 

(p=0.87).  
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Figure 36 MRI-flow ROC curves for: a) no COMP with AUC=0.66, b) no PEC with AUC=0.69, 
and c) no SGA with AUC=0.64 

 

Figure 37 ROC curves from MRI-PI for a) COMP with AUC=0.74, c) PEC with AUC=0.84, and 
e) SGA with AUC=0.69. ROC curves from US-PI for b) COMP with AUC=0.73, d) PEC with 
AUC=0.75, and f) SGA with AUC=0.75. 
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Figure 38 Comparison of the ROC curves from MRI-flow, MRI-PI, and US-PI in 66 subjects 
for COMP. They show no statistically significant difference (p=0.87). 

 

Figure 39 a) Example of healthy pregnant uterine artery 4D flow MRI pathlines, b) 
ultrasound of corresponding uterine artery with panel a, c) example of uterine artery 4D 
flow MRI  in preeclamptic pregnancy 

6.2.5 Discussion 

The principal finding of this study is concordance between 4D flow MRI and US in distinguishing 

between pregnancies with no COMP and COMP. We successfully applied 4D flow MRI to the 

UtAs and found increased MRI-PI in pregnancies that went on to develop SGA and PEC [32, 178-
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180], outcomes associated with impaired trophoblastic invasion. US-PI is used to measure UtA 

resistance as a reflection of downstream trophoblast invasion [96, 140, 141, 178]. As compared 

to US, 4D flow MRI provides the spatial coverage to visualize the length of the UtAs, measure 

lumen area, and decompose blood velocity in three orthogonal directions. In this study, both US 

and MRI-PI showed similar prediction of adverse outcomes based on ROC analysis. While US is 

more accessible, our data suggests that MRI-PI values are physiologically relevant, providing 

support for its continued development as a tool for assessing placental health.  

We observed that MRI-flow was lower in COMP than no COMP subjects. The no COMP vs. 

PEC/SGA group comparisons showed the same trend but sample size may not have been large 

enough to demonstrate significance. Elevated UtA PI may be a concern during late pregnancy 

because high resistance limits delivery of oxygenated blood to the placenta [96, 140, 141]. UtA 

flow is a more direct measurement of perfusion than PI. We previously demonstrated the 

feasibility of measuring UtA flow during pregnancy with 4D flow MRI [150]. The one IUFD subject 

in our study was found to have low UtA flow despite normal MRI/US-PI compared to the cohort of 

live births. Our findings are consistent with the notion that reduced total UtA flow rate to the 

placenta is linked to poor pregnancy outcomes. While studies of US-based measurements of UtA 

flow have reported lower flow in PEC [181-184] and SGA [185, 186], technical challenges have 

precluded clinical use of US-based flow. US is more user-dependent than MRI and sensitive to 

body habitus, angle of insonation, and instrument gain artifacts. As lumen diameter is a significant 

contributor to accurate flow measurements, flow measurements may be difficult to reproduce 

since lumen walls may not be clearly resolved [181]. Furthermore, since the UtAs are often 

tortuous, absolute measures such as flow rate that depend on measurement angle are 

challenging to interrogate [181]. 

We did not observe a significant change in MRI-flow with GA, which we previously attributed to 

our subject population being imaged only in the second/third trimester [150], since prior work 
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suggested that most of the increase in UtA flow occurs in the first trimester [142, 183, 187]. 

However, several studies have also reported an increase in UtA flow measured by US in the 

second and third trimester [63, 155, 188, 189]. Our findings suggest that low MRI-flow measures 

are meaningful and associated with adverse pregnancy outcomes, though intersubject 

heterogeneity in our population may have weakened the MRI-flow vs. GA relationship in our 

cross-sectional study. Although the mean GA at MRI was significantly later for the COMP than no 

COMP group (p<0.01, Table 11), this did not mask the effect of significantly lower MRI-flow in 

COMP than no COMP (p=0.04). Since GA is a plausible confounder [63, 186], we adjusted the 

analysis for GA and significant group differences persisted (p=0.03). 

In this study, US-PI showed an absolute positive bias over MRI-PI (p<0.01), consistent with our 

previous report [150], which can be attributed to MRI/US differences in spatiotemporal resolution, 

subject body positioning, and location of measurement along the UtA. Even though MRI-PI and 

MRI-flow AUC performances were comparable to US-PI (Fig. 38), UtA Doppler is still largely an 

investigational tool. US-PI has been found to have inconsistent performance especially in first 

trimester pregnancy and unselected, low risk populations [18, 168]. In Fig. 39, we show an 

example of the 4D flow geometry and pathlines in healthy and PEC subjects. This approach has 

the advantage of deeper penetration and larger field-of-view, thus able to more comprehensively 

visualize the uterine vessels for localization. 

4D flow MRI has been gaining clinical attention, showing utility in assessing various 

cardiovascular diseases [173]. For example, 4D flow MRI has been shown to measure wall shear 

stress (WSS), which can be utilized as a meaningful tool for assessing and managing intracranial 

aneurysms [190, 191]. For our purposes, the pathophysiology of PEC also involves inherent 

vessel wall dysfunction [32, 72, 139, 179, 192, 193]. Further development of 4D flow MRI for 

assessing the UtAs in pregnancy can lead to clinically impactful tools to aid in risk stratification, 
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identifying early signs of pathology, and guiding future clinical trials aimed at exploring potential 

preventive and treatment strategies.  

Our study had a high percentage of COMP subjects (18/74, 24%) compared to the 10-15% 

prevalence of PEC and SGA in the general population, but this is expected because the 

University of Pennsylvania serves a community with a large population of black women, and 

black race is a risk factor for PEC/SGA [194].  One limitation of this study is that it is cross-

sectional, making it difficult to distinguish between intersubject variability and gestational MRI-flow 

progression. Longitudinal studies can better characterize changes in UtA MRI-PI/flow. Another 

limitation is that the 4D flow MRI sequence used in this study had limited spatial (1.25x1.25x1.25 

mm3; ~3-4 voxels across the UtA diameter) and temporal resolution (42 ms), potentially limiting 

the accuracy of PI and flow rate measurements. We measured a median UtA flow of 623 mL/min 

in the no COMP subjects, which seemed lower than the values reported by US [63, 186] and 2D 

phase contrast MRI [124]. While it appeared possible that US overestimated mean velocity over 

the cross-sectional area by sampling the center of the vessel, we may have underestimated flow 

by using lower spatial and temporal resolution with a 1.5T rather than the 3T magnetic field 

strength used for 2D phase contrast MRI [124]. We believe this was a systematic bias that 

affected measurements in both COMP and no COMP subjects and we did demonstrate 

repeatability in a previous study [150]. Fortunately, substantial progress in 4D flow MRI is being 

made to decrease scan time and improve temporal and spatial resolution [195, 196]. We believe 

with optimization and technical improvements 4D flow MRI can potentially be useful earlier in 

gestation.  

6.2.6 Conclusions 

Effective methods to predict risk of adverse pregnancy outcome are critical to obstetric care. This 

study demonstrates that 4D flow MRI is comparable to Doppler US in measuring PI and 

additionally measures flow. Both PI and flow are able to distinguish between pregnancies with 
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PEC, SGA, or both and a reference group. 4D flow MRI is a technique that can serve as the 

foundation for more robust tools to better understand the hemodynamics of the UtAs during 

pregnancy. 
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CHAPTER 7: EXTENDED ANALYSIS OF MATERNAL PELVIC 

ARTERY GEOMETRY AND HEMODYNAMICS 

7.1 Maternal cardiovascular system in HPD 

Consistent with the placental origin hypothesis, some evidence indicates Research that UtA US is 

a better predictor of early-onset preeclampsia (diagnosed before 34 weeks or requiring delivery 

before 37 weeks) than other forms of HPD [139]. In contrast, the alternative maternal 

cardiovascular origin hypothesis may better explain late-onset preeclampsia and other forms of 

HPD for which UtA US does not perform as well [72]. It is possible that HPD results when a 

mother with cardiovascular disease has difficulty undergoing the significant changes in cardiac 

output, blood volume, systemic vascular resistance, and other processes to support the 

pregnancy. The fact that preeclampsia patients share many of the same risk factors, signs, and 

symptoms as cardiovascular disease patients motivates the value of investigating the maternal 

cardiovascular system beyond the uteroplacental network [197]. This chapter discusses two 

additional studies that analyze the images collected with 4D flow MRI of the uterine arteries to 

better understand the nature of uterine artery structure and hemodynamics. Unlike the previous 

chapters, which only discussed the placenta and uterine arteries alone, these studies expand the 

scope of the image assessment towards the entire maternal vascular network by also including 

descending aorta and external iliac arteries. Time-of-flight angiography (TOF) was performed for 

localization of the uterine arteries. However, because of the large field of view and high spatial 

resolution, centerline extraction could be extended to quantify length and curvature starting from 

the descending aorta to the uterine arteries and external iliac arteries. Furthermore, combining 

length information (TOF) and velocity information (4D flow and 2D phase contrast) in the maternal 

pelvic network enabled estimation of pulse wave velocity. Pulse wave velocity is relevant to HPD 
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research because it is a marker of arterial stiffness, which is a condition commonly suspected in 

HPD patients [32].  

7.2 Centerline geometry characterizes tortuosity 

7.2.1 Abstract 

The uterine artery undergoes morphological changes during pregnancy, but little is known about 

the gestational progression of the tortuosity and how it is abnormal in HPD. This study developed 

an MRI-based technique to quantitatively characterize the length and curvature of the uterine 

arteries. Preliminary results show the unilateral length of the UtAs from the bifurcation of the 

internal and external iliac arteries to the most inferior point of the UtAs was 144.8±29.7 mm 

(range = 89.6-230.9 mm). The RMS curvature was found to be 0.125 ± 0.034 mm-1 (range = 

0.064-0.2 mm-1) within the same UtA segments. There was a decreasing trend between 

gestational age and RMS curvature from the bifurcation to the most inferior point of the UtA (R2 = 

0.1, p = 0.007). Geometric parameters characterizing the UtAs based on TOF angiography may 

ultimately provide clinically relevant biomarkers of aberrant remodeling in early gestation. 

7.2.2 Introduction 

During pregnancy, the maternal uterine arteries (UtAs) undergo vasodilation and elongation to 

accommodate the gravid uterus and match fetal demand for oxygen and nutrients [46]. Maternal 

arterial dysfunction is characteristic of pregnancy disorders such as preeclampsia [168] and 

patients have inward smooth muscle hypertrophy, increased wall thickness, and limited 

vasodilation at delivery [198]. However, there is limited quantitative information about temporal 

remodeling of UtAs. This information may add value to diagnosis and screening of hypertensive 

pregnancy disorders [46]. We have shown that noninvasive, non-contrast MRI is feasible for 

characterization of UtA anatomy and hemodynamics in humans [199]. Our objective was to 
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quantitatively describe the geometry of the pelvic arteries in healthy pregnant subjects using time-

of-flight (TOF) MRI angiography. We hypothesize that the UtA lengthens and becomes more 

tortuous with gestational age. 

7.2.3 Methods 

TOF MRI data from 36 healthy pregnant subjects were analyzed (n=23 in the 2nd trimester, and 

n=13 in the 3rd trimester, gestational age range=16 to 39 weeks). The TOF parameters were: 

TR=394 ms, TE=4.4 ms, flip angle=50 degrees, and diastolic ECG-gating. The TOF angiogram 

was segmented, isosurfaces and centerlines were generated, and length and curvature were 

quantified (Fig. 40b). The centerline connected the center points of maximally-inscribed spheres, 

approximated by a Voronoi diagram, along the interior of the vessel. The curvature, !  , was 

defined as the reciprocal of the radius, r, of the osculating circle ! = #
$    tangent to the centerline 

in the normal direction using the Frenet reference system (Fig. 40c). Vessel curvature for an 

entire vessel was calculated using the root mean squared (RMS) curvature. Pearson’s R 

correlation was performed to test for linear correlations between path length, RMS curvature, and 

gestational age. 

7.2.4 Results 

Figure 41a shows the centerline and UtA curvature histograms of a representative subject (Fig. 

41b,c). The UtAs formed a tortuous structure, looped superiorly, and crossed the external iliac 

arteries towards the placenta at the fundus of the uterus. The unilateral length of the UtAs from 

the bifurcation of the internal and external iliac arteries to the most inferior point of the UtAs was 

144.8±29.7 mm (range = 89.6-230.9 mm). An increasing trend was observed (R2 = 0.04, p = 

0.08) between gestational age and unilateral length (Fig. 42a). The RMS curvature was found to 

be 0.125 ± 0.034 mm-1 (range = 0.064-0.2 mm-1) within the same UtA segments. There was a 
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decreasing trend between gestational age and RMS curvature from the bifurcation to the most 

inferior point of the UtA (R2 = 0.1, p = 0.007; Figure 42b). 

 

Figure 40 a) 3D maximum intensity projection of the TOF angiogram in a representative 
subject. The green arrowheads delineate the UtAs after branching from the internal iliac 
arteries. b) The isosurface rendering and centerline extraction of the same subject. Red 
dots represent the starting landmarks at the bifurcation of the internal and external iliac 
arteries. Black dots represent the ending landmarks at the most inferior point of the UtAs. 
The path length and root mean squared curvature reported in this study are calculated 
from the blue coordinates. C) Diagram of how curvature is computed based on the tangent 
osculating circle to a curve. The more tortuous curve has a smaller radius (r) and higher 
curvature (κ). 
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Figure 41 a) Centerlines of a representative subject with difference in tortuosity between 
the left and right UtA. It extends from the descending aorta through the common iliac 
arteries, internal iliac arteries, UtAs, and external iliac arteries. Red dots represent the 
starting landmarks at the bifurcation of the internal and external iliac arteries. Black dots 
represent the ending landmarks at the most inferior point of the UtAs. The curvature 
histogram of the right UtA (b) has a narrower distribution than the left UtA (c). 
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Figure 42 a) Plot with linear correlation results showing decreasing trend in path length 
over gestational age (GA) in the left UtA and right UtA. b) Plot with linear correlation 
results showing curvature with decreasing trend with gestational age (GA) in the left UtA 
and right UtA. 

7.2.5 Discussion 

This study demonstrated quantitative characterization of UtA length and curvature geometry 

using TOF MRI angiography. Curvature was found to be a quantitatively meaningful descriptor of 

UtA tortuosity and could differentiate bilateral UtA anatomical heterogeneity. This may reflect 

variations in placental location, viability and distal uterine and spiral arterial remodeling. 

Additionally, this study provided important preliminary data regarding the association between 

UtA length, curvature and gestational age. It was expected that the UtA path length would 

increase during angiogenesis and become more tortuous to accommodate fetal growth and 

decreasing blood flow pulsatility. However, we saw a decrease in length and curvature, which 

may be because the uterine artery was originally coiled and the expanding uterus causes it to 

uncoil. UtA remodeling is believed to rapidly occur within the first two trimesters to anticipate 

increased fetal oxygen and metabolic demand, tapering off by 3rd trimester [46, 200]. We 

observed that path length and curvature vary considerably with laterality. Future work will 

investigate curvature and tortuosity in patients with adverse pregnancy outcomes. 



www.manaraa.com

125 

 

7.2.6 Conclusions 

The major contributions of this study are 1) the development of an approach to measuring length 

and curvature of the UtAs, and 2) trends toward UtA path length shortening and decreased 

tortuosity with gestational age. Additional subjects will confirm that these trends are consistent 

with UtA remodeling in animals [46]. This approach is applicable to studying UtA remodeling early 

in pregnancy and can be used to investigate the relationship between vascular geometry and 

hemodynamics. 

7.3 Pulse wave velocity characterizes arterial stiffness 

7.3.1 Abstract 

Maintenance of blood supply to the placenta is believed to be dependent on the geometric and 

hemodynamic properties of the uteroplacental vasculature. In this study we present an MRI 

method for measuring pulse wave velocity in the uterine arteries. In 6 healthy pregnant subjects, 

we measured path length and time-to-peak of the velocity waveforms in the uterine arteries and 

external iliac arteries. The uterine arteries have lower pulse wave velocity than the external iliac 

arteries (5.5±2.5 vs. 12.9±4.6 m/s, p=3x10-5), suggesting biomechanically greater compliance. 

7.3.2 Introduction 

After successfully showing feasibility in human pregnancy, we sought to extend the 4D flow MRI 

analysis technique by estimating pulse wave velocity (PWV) in the UtAs. UtA remodeling is 

believed to involve increasing arterial compliance to reduce blood flow resistance to the placenta 

[138] based on flow-mediated dilation studies and animal models [60, 201-203]. A limitation of 

ultrasound-based flow-mediated dilation studies is their inability to visualize the UtAs beyond 3-4 

cm in length at a time. In this study, we leveraged time-of-flight (TOF) and 4D flow MRI to 

measure and compare PWV measured from the descending aorta (dAo) to the UtAs and external 
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iliac arteries (EIAs). To our knowledge, 4D flow MRI measurements of PWV in the UtAs in human 

pregnancy have not yet been reported. We hypothesized that the UtAs would have lower PWV 

than the EIAs. 

7.3.3 Methods 

We acquired TOF and 4D flow MRI in 6 healthy singleton pregnant women (gestational age 

(GA)=18-25 weeks) at 1.5T (Avanto; Siemens Healthcare, Erlangen, Germany). They were 

imaged in supine position with 8-channel spine array, two 4-channel body array coils, 

electrocardiogram synchronization. The MRI protocol consisted of a half-Fourier acquisition 

stimulated echo (HASTE) to localize the pregnant uterus, TOF angiogram from the dAo to the 

femoral heads of the thigh bones, 2D phase contrast velocimetry at the dAo, and 4D flow of the 

UtAs (total acquisition time=30-40 min). The TOF parameters were: repetition time (TR)/echo 

time (TE)=394/4.4 ms, flip angle (FA)=50º, field-of-view (FOV)=350x250x190 mm3, voxel 

size=1.1x1.1x2.8 mm3. The 4D flow parameters were: TR/TE=5.5/2.8 ms, FA=8º, 

FOV=320x240x60 mm3, voxel size=1.25x1.25x1.25 mm3, PEAK-GRAPPA acceleration 

factor=4.7 [145], velocity encoding parameter (VENC)=120-160 cm/s [22], number of cardiac 

phases=10-18. The TOF angiograms were segmented (Seg3D; Univ. of Utah SCI) and 

centerlines were extracted (VMTK) to compute path length (PL) from the dAo to the UtAs and 

EIAs. The 4D flow images were processed with custom software (MATLAB) [147] and volumetric 

velocity-based thresholding (Ensight, CEI; Apex, NC). Eight planes were prescribed in each 

vessel and time-to-peak (TTP) was computed from the velocity waveform extracted from each 

plane. PWV was computed by PWV=PL/TTP [m/s]. We used box-and-whisker plots, two-tailed 

paired t-test, and two-way ANOVA to compare the PWV results. 

7.3.4 Results 
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Figure 43 shows the dAo, EIA and UtA blood velocity in one subject at 18 weeks gestation. 

Across all subjects, PWV was 5.5±2.5 m/s (mean±std) in the UtAs and 12.9±4.6 m/s in the EIAs 

(p=3x10-5). The difference in PWV was 7.4 m/s with 95% confidence interval [5.2,9.6] m/s. Figure 

44 shows that the UtAs have lower PWV than the EIAs. When comparing PWV measurements 

between vessel type (UtA vs. EIA) and laterality, there was an effect of vessel type (p=3x10-4) but 

not in laterality (p=0.42). The UtA and EIA diameters were 6.2±0.7 mm and 8.2±1.0 mm (p=1x10-

4), respectively. Table 12 contains the data for each subject. 

 

 

Figure 43 Vessel isosurface including the descending aorta, UtAs, and EIAs in a subject at 
18 weeks gestational age. Only one 2D phase contrast measurement was obtained at the 
descending aorta. The remaining red dots indicate approximate locations at which eight 
planes were extracted from the 4D flow acquisition. Path length (PL) and time-to-peak 
(TTP) were computed and normalized to the reference measurement in the descending 
aorta to calculate PWV. 
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Figure 44 a) Box-and-whisker plot of individual left and right UtAs and EIAs, b) box-and-
whisker plot of UtAs and EIAs with left and right sides averaged together, c) scatter plot 
with linear fit of individual left and right UtAs and EIAs, d) scatter plot with linear fit of 
UtAs and EIAs with left and right sides averaged together. 
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Table 12 Details of each subject. It appears that the longer TTP in the UtA compared to the 
EIA is a major contributing factor to the smaller PWV. GA=gestational age, PL=path length, 
TTP=time to peak, PWV=pulse wave velocity 

7.3.5 Discussion 

We found that the UtA PWV was lower than EIA PWV between 18-25 weeks of pregnancy. 

According to the Moens-Korteweg equation, this would indicate reduced UtA wall compliance or 

wall thickness compared to the EIAs. We speculate PWV decreases with time as UtA wall 

compliance increases with gestational remodeling [60]. This response is important in maintaining 

low blood flow resistance and high flow rate to the placenta [60]. PWV can potentially be used to 

monitor UtA hemodynamics in patients with high risk of hypertensive disorders of pregnancy, 

which are believed to reflect systemic endothelial dysfunction [202, 203]. A limitation of 4D flow is 

its low temporal resolution compared to the EIA pulse wave transit time (Dt=40 vs. TTP=21 ms). 

This was mitigated by selecting a large distance between the reference (dAo) and the UtA/EIA 

locations, and measuring PWV at several UtA/EIA locations. Nevertheless, we found that EIA 

PWV was slightly higher than previous US studies (9.4-9.8 m/s) [38, 39], which may imply a 

combination of inaccurate spatial distance measurements in US and low temporal resolution. A 

further limitation of this study is that it assumes inviscid flow since there is no dependence on 
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viscosity [204]. Finally, differences in radius between the EIA and UtA may also have contributed 

to this trend since the UtAs have a smaller radius than the EIAs. In future work, fluid dynamic 

simulations and increase in spatial resolution of 4D flow would aid in better understanding of the 

viscous interactions between the blood flow and the arterial wall. A longitudinal study can better 

investigate the change in UtA PWV with gestational age. 

7.3.6 Conclusions 

The major contribution of this work is a joint structural-functional approach to assessing PWV in 

pregnant women. Physiologic changes in the female pelvic vasculature are believed to reflect 

pregnancy health during the course of gestation. Therefore, PWV may be a potential biomarker of 

UtA remodeling during clinical monitoring for adverse pregnancy outcomes. 

 



www.manaraa.com

131 

 

CHAPTER 8: CONCLUSIONS, LIMITATIONS, AND FUTURE 

DIRECTIONS 

8.1 Conclusions 

Today, the mechanisms of HPD are under investigation and early prediction of adverse 

pregnancy outcomes continues to be a challenge. This motivates researchers to continue 

developing technologies that can noninvasively study human placental physiology and to provide 

biomarkers that can be used in clinical diagnosis and management. This dissertation contributes 

to this effort by exploring how current MRI flow and perfusion methods already successful in the 

brain and cardiovascular system can be applied to the uteroplacental circulation. The evidence 

presented in this thesis shows the feasibility of MRI in human pregnancy by addressing 

challenges such as motion and extracting functional information from small vessels. These 

studies also explored innovative ways to characterize the uteroplacental structure and function by 

developing visualizations and metrics based on these imaging techniques.  

Chapter 4 described the application of arterial spin labeling (ASL) to the placenta, the key organ 

of nutrient exchange between the mother and fetus. However, placental MRI is susceptible to 

motion artifacts from respirations, contractions, and fetal movement. This study of FAIR ASL was 

affected by these artifacts, but it showed promise as images processed by traditional methods 

demonstrated the expected pattern of perfusion. After establishing the feasibility of placental ASL, 

the need for a novel pattern analysis approach to more accurately capture the unique physiology 

of the placenta was identified. The combination of Bayesian statistics, spline-based coordinate 

transformation, and cluster analysis showed blood distribution aggregates reminiscent of the 

known lobular structure of the placenta. This work opens the door for future investigation in the 

ability of ASL cluster analysis to distinguish between hypertensive and normal pregnancies.  
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In response to the numerous uterine artery Doppler flow velocimetry studies to evaluate 

pregnancy health, especially the risk of HPD, Chapter 5 described the application of 4D flow MRI 

to the uterine arteries in human pregnancy. 4D flow MRI enabled 3D pathline visualization of 

blood flow in the tortuous vessels, extraction of time-resolved 2D velocity fields at vessel cross 

sections, calculation of flow rate, pulsatility index (PI), and resistivity index (RI). By comparison, 

corresponding ultrasound PI and RI moderately agreed with MRI. The other information such as 

flow rate were believed to be more reliable in MRI and generate interest in further investigation of 

complex flow properties that may be more physiologically relevant than PI and RI (Chapter 7).  

Chapter 6 correlated information from 4D flow MRI of the uterine arteries with pregnancy 

outcomes to see if this technique can detect the difference between preeclampsia/small for 

gestational age and normal pregnancies. It was shown to perform successfully and similarly to 

ultrasound PI. This establishes the validity of 4D flow MRI and the value of further technical 

improvement to leverage the additional complex hemodynamic information unique to this method 

for HPD research.  

Chapter 7 explored cardiovascular physiology extending beyond the uteroplacental vessels. 

Time-of-flight (TOF) MRI angiography originally used for localization of the uterine artery also 

captured a large field of view including the descending aorta through the external iliac 

arteries/uterine arteries. It was also apparent that the uterine arteries had a unique tortuous 

structure that was probably an adaptation to the expanding uterus. To aid exploration, centerline 

extraction from the TOF MRI was performed and followed by calculation of path length and 

curvature. Path length information combined with velocimetry of the aorta (2D phase contrast 

MRI) and uterine artery/external iliac artery (4D flow MRI) enabled estimation of pulse wave 

velocity (PWV). Since arterial stiffness of endothelial dysfunction has been identified as a 

potential biomarker of HPD and PWV is known to be related to arterial stiffness, this technique of 

measuring PWV was developed to examine possible correlation with adverse pregnancy 
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outcomes. Results show promise as PWV was found to be higher in the external iliac arteries 

than the uterine arteries, which is consistent with the expectation that the former vessels would 

be stiffer. 

8.2 Limitations 

There are several limitations to the version of ASL presented in Chapter 4. First, the sequence 

was a 2D multislice technique that had a 2.5 mm slice gap and only four 10 mm slices, which 

meant that there was incomplete coverage of the placenta. An accelerated 3D version of ASL 

would be needed to assess the entire intervillous space for maternal vascular malperfusion 

abnormalities. Second, the post-label delay time points were sparse, only 2 to 4 points between 

500 to 2000 ms. By these times, most of the blood has reached steady state in the intervillous 

space. To capture perfusion dynamics, shorter post-label delays would have been needed (<150 

ms). Third, this study was conducted at 1.5 T MRI field strength, which compared to 3T limited 

the amount of perfusion signal distinguishable from physiological noise. Fourth, there was a small 

sample size when correlating adverse pregnancy outcomes with the cluster based metrics, so a 

larger sample size would be needed to confirm that the cluster metrics are related to placental 

health.  

One of the limitations of the UtA 4D flow MRI studies presented in Chapter 5 and Chapter 6 was 

that it was cross-sectional, which made the results vulnerable to physiologic variation (e.g. height, 

weight, and internal iliac branching geometry). This can be mitigated with a longitudinal study to 

track flow changes over time for each subject. Also, the accuracy of 4D flow MRI assessment of 

UtA function may have been limited by UtA tortuosity, causing MRI acceleration and 

displacement artifacts. The findings were also limited by spatial resolution. Even when the UtA 

was visible in pregnant subjects, three voxels spanned the vessel at best, which did not allow the 

calculation of interesting complex hemodynamic parameters such as pressure gradient or wall 
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shear stress. Limited temporal resolution also made it difficult to identify detailed features of the 

UtA velocity waveforms such as diastolic notch in ultrasound.   

The centerline extraction and pulse wave velocity studies described in Chapter 7 were proof-of-

concept and had several limitations. The centerline geometry did not contain the other branches 

of the internal iliac arteries which may be important for understanding the structure of the UtAs 

relative to the other vessels. The path lengths were denoted as ending at the most inferior point 

of the “hairpin loop” of the UtAs before they ascended along the side of the uterus, but this 

missed part of the tortuous segment immediately after the inferior point. The end point may have 

also been slightly arbitrary because the extent of the visible UtAs transitioning to arcuate arteries 

was limited by vessel size and time-of-flight MR image quality. The path length and curvature 

versus gestational age correlations may have been confounded by other factors including 

maternal height, maternal weight, fetal weight, and body habitus during MRI scan. 

A limitation of the PWV study was that the time shift of the UtA and external iliac artery velocity 

waveforms relative to the aorta velocity waveform was calculated based on peak velocities. 

Ideally the time shift should be measured between the “foot” (minimum velocity immediately after 

the peak) of each waveform in order to avoid wave reflections interfering with the time shift of the 

forward wave. However, this was not feasible with the current 4D flow MRI sequence because of 

low temporal resolution. Another consequence of low temporal resolution was that a large 

distance between the starting and the end velocity measurements was required to estimate global 

PWV. Therefore, even though the aorta, UtAs, and external iliac arteries were expected to have 

different vessel wall properties, local PWV could not be calculated with this technique. Both 

centerline extraction (path length and curvature) and PWV studies did not have a gold standard to 

evaluate accuracy.  
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8.3 Future Directions 

Placental ASL MRI can be further improved upon by implementing 3D full coverage of the 

placenta using simultaneous multi slice imaging and by performing studies at 3 Tesla to increase 

sensitivity [24]. This would allow three-fold acceleration of the scan to acquire the images in a 

reasonable amount of time while capturing perfusion dynamics with multiple post-label delays. To 

mitigate the risk of slice order introducing bias into the ASL image contrast, slice shuffling can be 

used to average out these slice order effects. New labeling strategies can be tested to see if they 

can overcome the inflexible localization of labeled blood, the main limitation in FAIR ASL. Also, 

the ASL-related patterns can be correlated with placental oxygenation techniques such as BOLD 

MRI and T2* mapping. The placental pattern analysis can be improved upon by parameterizing 

the distance from the maternal to fetal side. This would make blood distribution characterization 

more precise when comparing between subjects. For validation, the in vivo patterns captured by 

ASL MRI could be mapped to post-delivery placental pathological features. In HPD, the key signs 

of maternal vascular malperfusion include placental hypoplasia, accelerated villous maturation, 

and decidual arteriopathy. 

The UtA 4D flow MRI can be improved by conducting a longitudinal study to distinguish between 

intersubject variability and gestational MRI-flow progression. The MRI sequence can be 

accelerated using recent innovations such as 3D radial readout trajectory [195], spiral trajectory 

[205], and compressed sensing [205]. A shorter scan time (<10 min.) increases comfort for the 

pregnant subject lying supine and decreases the risk of motion introducing artifacts in the images. 

Acceleration can also achieve better image quality, reaching 15 ms temporal resolution and 

<1x1x1 mm3 spatial resolution. Also, since the prospective gating causes the scan to miss some 

end-diastolic cardiac phases per cycle, implementing retrospective reconstruction can lead to 

more accurate calculations of hemodynamic parameters. These improvements may allow 4D flow 

MRI to be more suitable for assessing the UtAs earlier in gestation. 
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There are various ways to improve upon the time of flight MRI centerline analysis of the maternal 

pelvic arteries. The main limitation of the current study was that the path length and curvature 

versus gestational age analyses were cross-sectional and therefore susceptible to confounding 

factors. These factors include maternal height, maternal weight, fetal weight, and body habitus 

during MRI, which should be considered in a future study because they can potentially affect 

uterine artery path length and curvature. A future longitudinal study of how path length and 

curvature change over gestation in each subject may help better understand the involvement of 

vessel geometry in the physiological adaptation of pregnancy without interference of intersubject 

variability. Additional MRI vessel wall imaging of the uterine arteries can enable investigation of 

the vessel wall changes involved during gestation. A recent study [206] reported mathematical 

modeling of the spiral geometry of the spiral arteries to simulate its effect on flow rate and 

resistance. It was found that increased complexity in the structure of the vessel increased 

resistance to flow while decreasing flow rate. Similar analysis can be applied to the uterine 

arteries to better understand the physiological remodeling process during pregnancy.   

Improvements can be made to the PWV study. In the future, ultrasound-based measurement of 

PWV can be used as a baseline reference to validate MRI-based PWV. Alternatively, a 

repeatability of the 4D flow MRI-based PWV can be used to test for robustness of the method. 

The main concern of the 4D flow MRI sequence was the low temporal resolution, so future 

studies should leverage state-of-the-art acceleration and reconstruction techniques to reduce 

measurement error. An experimental phantom such as the one described by Ruesink et. al. [207] 

can be used to model uterine artery mechanical properties to monitor their effect on 

hemodynamics including PWV. Computational fluid dynamics can also serve a similar purpose by 

modeling the uterine artery geometry, mechanical properties, and hemodynamics 

computationally. 
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8.4 Summary 

This dissertation describes the application of ASL and 4D flow MRI to investigate the blood 

supply to the placenta during pregnancy. ASL MRI was found to be sensitive to blood flow 

patterns in the placenta that were consistent with structure of the intervillous space and lobular 

arrangement. 4D flow MRI was found to successfully measure flow rate in the uterine arteries, a 

parameter which was predictive of adverse pregnancy outcomes. Path length, curvature, and 

PWV of uterine arteries were additional parameters that were found to be measurable with MRI. 

They can potentially be relevant biomarkers of HPD. MRI is a noninvasive technique that offers 

potential to better characterize the physiological changes in pregnancy and, with further 

development, become a useful clinical tool for risk assessment in HPD.  
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